Two Basic Elements of Information

Common

Common Feature	Distinction (Form)	Bit
1 Action	Distinction	Choice
2 Possible Outcomes	Inside / Outside	On / Off

Differences ?

1948: C.E. Shannon calculates electric signal flow in telephone wires

- Shannon invents the 'Bit' as calculatory unit for information (signals)
- 1 bit → Selection of two *equiprobable* states
- Bits measure **information content** (**entropy**)

What is entropy?

Bits and Entropy

Entropy is a Relatively **New** Concept (19th Century)

- 1824: Carnot: Energy Flow in Steam Engines
- 1850+ Clausius, Kelvin: Second Law of Thermodynamics
- **1865:** Clausius: Term "Entropy" (Inner Capacity of Moving)
- 1877: Boltzmann: Statistic Model of Entropy
- **1948**: C.E. Shannon: Information Entropy, Bit
- 1948+ C.F. Weizsäcker et al.: Microlevel/ Macrolevel

But what does entropy mean? → Order? - Disorder?

Entropy

Energy and Entropy, subjects of the two General Laws of Physics:

- 1st Law of Thermodynamics: dE/dt = 0
- \rightarrow Equation \rightarrow Calculations (Schrödinger etc.)
- 2^{nd} Law of Thermodynamics: $dS/dt \ge 0$ \rightarrow Unequation

Entropy: Between Micro and Macro Level

Micro and Macro Level Define Entropy (Example W.Salm):

Two Levels define Entropy

Entropy is the information known in micro, but unknown in macro level

Information lies in the step from macro to micro level

- Coarse grained view: macro level
- Fine grained view: micro level

The two levels are relative and movable (dynamic)

Entropy = 'Information *Tension*' = 'Information *Surprise*' = from Intransparency to Transparency

How do we move between the levels?

Moving from Macro to Micro Level – and Back

Microlevel → full details

Macrolevel → relevant **overview**

→ Example Classification:

When we classify, we loose information about the details - intentionally!

Classification is Interpretation

- Intepretation is Simplification (Going to the Macrolevel)
- Different interpretations are possible:

How do we share our interpretations?

Language

Semiotic Triangle

- Aristotle / C.S. Peirce / J. Piaget / J.F. Sowa
- Ogden/Richards, 1923: "The meaning of meaning":

No direct relation from **words** (W) to **objects** (O) Internal **concepts** (C) relate words and concepts

Interpreter, Reality and Constructivism

- Who links words and objects to concepts?
- Who draws a distinction?

Answer: the observer or interpreter = IS

IS and the Laws of Form

Who 'draws the distinction'?

- Interpreter (IS) is a **part** of the full unlimited reality (R_f)
- Interpreter (IS) reconstructs (R_c) the full reality $R_{f (no copy, no 1:1)}$

- Full reality R_f is limitless
- Reconstructed R_c reality is visible only to interpreter
- We live in our reconstructed $R_c \leftarrow Constructivists$, not Solipists

Communication Between Two IS

- Both IS observe a limited space (R_0) of full reality (R_f)
- Their individual observed R_o's overlap
- They try to clear and enlarge their common $\rm R_{o}$
- They adjust the meanings (C) of words (W) and situations (O) in a dynamic process
- This process establishes the resonance between IS_1 and IS_2
- A resonance between IS_1 and IS_2 is, at the same time, a precondition for their communication.

Rf: full, unlimited reality IS: interpreter R_o: observed reality R_c: internal reality reconstruction C: internal concepts W: uttered, written words O: objects in real situations

Common for Distinction and Bit

Common Feature	Distinction (Form)	Bit
1 Action	Distinction	Choice
2 Possible Outcomes	Inside / Outside	On / Off

One basic information step

- 1 → 2
- Macro → Micro Level
- Action (Dynamic) Result (Static)

Differences

- Border:
 - Distinction: open (unmarked state)
 - Bit: closed
- Information content (Entropy):
 - Distinction: S > 1 Bit,
 - Bit: S = 1 Bit
- Action:
 - Distinction: Distinction (to context)
 - Bit: Choice (of predefined two)
- MacKay:
 - Distinction: Descriptive information content
 - Bit: Selective information content

Examples Closed Systems

- Classifications
- Set of natural numbers
- Syllogisms of Aristotle
- FOL
- Experiments in laboratories
- Standards

Examples Open Systems

- Biotops
- Societies
- Human knowledge
- Languages
- Brains
- Art
- Life
- Q-Bits
- Logodynamics

Context Diagram

https://hrstraub.ch https://ld-cards.com