Entropie und Information

Entropie und Information

Der Begriff Entropie wird gerne vermieden, weil er eine gewisse Komplexität enthält, die sich nicht wegdiskutieren lässt.
Doch wenn wir über Information sprechen, müssen wir auch über Entropie sprechen. Denn Entropie ist das Mass für die Informationsmenge. Wir können nicht verstehen, was Information ist, ohne zu verstehen, was Entropie ist.

Information ist immer relativ.

Wir glauben, dass wir Information packen können, so wie wir Bits in einem Speichermedium ablegen. Die Bits sind dann die Information, die objektiv verfügbar ist. Wir haben uns so sehr an dieses Bild gewöhnt, dass wir glauben, dass Information in kleinen Kügelchen daherkommt, die ja und nein sagen können. Doch dieses Bild täuscht.

Denn natürlich sagen die Kügelchen nicht ‹ja› oder ’nein›, nicht 0 oder 1, nicht TRUE oder FALSE, und auch sonst nichts bestimmtes. Bits haben gar keine Bedeutung, es sei denn, man habe diese Bedeutung von aussen her definiert. Dann können sie sehr gut 1, TRUE, ‹Ich komme heute zum Abendessen› oder irgend etwas anderes aussagen, jedoch erst zusammen mit ihrer Umgebung, ihrem Kontext.

Aus dieser Überlegung wird klar, dass Information relativ ist. Das Bit bekommt seine Bedeutung erst aus einer bestimmten Einordnung heraus. Je nachdem bedeutet es 0 oder 1, ‹Wahr› oder ‹Falsch›, usw. Das Bit ist an seinem Platz zwar gesetzt, doch seine Bedeutung bekommt es erst durch seinen Platz.
Somit muss der Platz, also der Kontext mit hineingenommen werden, damit klar wird, was das Bit bedeuten soll. Und natürlich ist die Bedeutung relativ, das heisst, das gleiche Bit, kann in einem anderen Kontext, einem anderen Platz eine ganz andere Bedeutung haben.

Diese Relativität ist nun charakteristisch nicht nur für das Bit, sondern für jede Art Information. Jede Information bekommt ihre Bedeutung erst durch den Kontext, in dem sie steht. Sie ist also relativ. Denken Sie das am besten an Beispielen aus Ihrem Leben durch. Information ist nicht das Signal, das auf ‹ja› oder ’nein› steht. Dieses Signal ist nur das Signal. Was es bedeutet, wird erst klar, wenn Sie das Signal aus Ihrer Warte heraus interpretieren, wenn Sie es aus Ihrem Kontext heraus ansehen.
Erst dann bekommt das Signal für Sie eine Bedeutung. Diese Bedeutung liegt nicht absolut, d.h. isolierbar im Signal Bit, sondern relativ in der Interaktion zwischen Ihrer Erwartung , dem Kontext, und der Stellung des Schalters, der auf ON oder OFF gestellt sein kann. Dieser Schalter ist das Bit. Seine Bedeutung an sich, also wenn das Bit isoliert wird, ist nur ON oder OFF.
Alles andere liegt in der Umgebung.

Definition der Entropie

In Anbetracht der Tatsache, wie wichtig Information und Informationstechnologien sind, ist es schon erstaunlich, wie wenig bekannt die wissenschaftliche Defintion von Entropie, also von Information ist:

Entropie ist das Mass für die Information, die im Mikrozustand bekannt ist, im Makrozustand aber nicht.

Die Entropie hängt somit eng mit der Information auf Mikro- und Makrolevel zusammen, und sie kann als ‹Abstand› oder Differenz der Information auf den beiden Informationsebenen gesehen werden.

Mikro- und Makroebene

Was ist mit diesem Abstand zwischen Mikro- und Makroebene gemeint? – Die Mikroebene enthält die Details (also viel Information), die Makroebene die Übersicht (also weniger, dafür gezieltere Information). Der Abstand zwischen den beiden Ebenen kann sehr klein sein (wie beim Bit, wo das Mikrolevel gerade zwei Informationen kennt: on oder off ) oder aber riesig gross, wie z.B. bei der Temperatur (Makrolevel)  des Kaffees, wo Bewegungsenergien der vielen Moleküle (Mikrolevel) die Temperatur des Kaffees bestimmt. Die Zahl der Moleküle liegt in diesem Fall in der Grössenordnung der Avogadroschen Zahl 1023, also ganz schön hoch, und die Entropie des Kaffees in der Tasse ist entsprechend wirklich sehr hoch.

Andererseits gibt es auch ‹kleine› Informationen, die sehr nahe an der Grössenordnung eines Bits (Infogehalt = 1) heran kommen. Immer aber kommt es auf das Verhältnis von Mikro- zu Makrozustand an. Dieses Verhältnis – also was im Mikrozustand gewusst wird, im Makrozustand aber nicht – definiert die Information.

Die Komplexität des Makrozustandes

Der Makrozustand enthält stets weniger Information als der Mikrozustand, er ist eine gezielte Vereinfachung der Information des Mikrozustandes.

For example: a certain individual (micro level), can belong to the collective macro groups of Swiss inhabitants, computer scientists, older men, contemporaries of the year 2024, etc., all at the same time.

Das führt dazu, dass der gleiche Mikrozustand verschiedene Makrozustände beliefern kann. Zum Beispiel: Ein Individuum des Mikrolevels kann in der komplexen Welt der Gesellschaft mehreren Makrogruppen angehören, also gleichzeitig den Makrogruppen der Schweizer, der Informatiker, der älteren Männer, der Zeitgenossen des Jahres 2024 usw. Alle diese Makrogruppen bestehen aus vielen Individuen und sie überschneiden und durchdringen sich auf wechselnde Weise.

Die Möglichkeit, aus verschiedenen Mikrozuständen gleichzeitig mehrere Makrozustände herauszuziehen, ist charakteristisch für die Komplexität von Mikro- und Makrozustand und somit auch für die Entropie.

So einfach lässt sich also die Entropieüberlegung nicht in komplexere Netze übertragen, wie es die einfachen Beispiele der Kaffeetasse nach Boltzmann, des verlorene Schlüssel nach Salm oder das simple Bit vermuten lassen.

Siehe auch:
Paradoxe Logikkerne, Teil 2
Bit und Unterscheidung
Fünf Vorurteile über Entropie


Das ist ein Beitrag zum Thema Entropie. Siehe -> Übersichtsseite Entropie


 

Schreiben Sie einen Kommentar

Ihre E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert