Alle Artikel von Hans Rudolf Straub

Resonanz und Tonleitern

Im Gespräch mit informierten Musikern, höre ich von Ihnen oft, dass die Musiktheorie Tonleitern bereits perfekt erklärt, und zwar über die Obertonreihe. Diese jahrhundertealte Vorstellung ist nicht ganz falsch, aber auch nicht ganz richtig.

Nun ist die Obertonreihe selber zwar keine Tonleiter, doch die Theoretiker wenden mathematische Tricks an, um von der Obertonreihe doch noch unser Dur und Moll abzuleiten. Ich empfinde diese Tricks als kompliziert und willkürlich. Zudem fehlt eine physikalische Begründung für die nötigen Rechenschritte. Viel einfacher, stimmiger und physikalisch begründet ist die Erklärung nicht über die Obertonreihe, sondern über die Resonanz.

Wie die Resonanz physikalisch hinter den Tonleitern steht, erkläre ich in dieser Zusammenstellung:
–>  Resonanz als Begründung der Tonleitern

Wie gefährlich Ist Künstliche Intelligenz?

Was ist Intelligenz?

Wenn heute über Nutzen und Gefahren der KI diskutiert wird, sollte dies nicht getan werden, ohne auf den Unterschied zwischen künstlicher und natürlicher Intelligenz hinzuweisen.

Der Unterschied ist bei genauem Hinsehen evident, doch auf den ersten Blick kaum zu erkennen. Das ist die Gefahr, denn das Potenzial der künstlichen Intelligenz ist riesig. Das Dumme ist nur, dass KI zwar beeindruckend, aber nicht wirklich intelligent ist. Der Ausdruck KI,  kommt aus dem Amerikanischen (artificial Intelligence), und dort hat das Wort intelligence zwei Bedeutungen:

1) Intelligenz (wie im Deutschen)
2) Erkennung, Aufklärung (wie in CIA)

Die KI erscheint uns intelligent – im Sinn 1) – weil sie wirkliche Intelligenz von wirklichen Menschen eingebaut hat. Sie präsentiert uns auf raffinierte Weise diese wirklichen Intelligenzleistungen von echten Menschen, und tut so, als wären das ihre eigenen Intelligenzleistungen.

a) Analytische KI

Darunter fallen z.B. Gesichtserkennung, Vorschläge von Suchmaschinen usw.
Hier müssen wirkliche Menschen zuerst einen riesigen Pool (=Corpus) von Zuordnungen erschaffen. Die KI arbeitet anschliessend statistisch in diesem riesigen Pool. Je grösser er ist, umso präziser wird die statistische Aussage. Zugleich treten auch die Schwächen zutage:
Wenn der Pool zu einseitig ist (biased), dann sind auch die KI-Resultate entsprechend verformt. Die Menschen, die die Zuordnungen im Pool treffen, müssen also korrekt, bzw. im Sinn des Auftragsgebers, arbeiten. Wenn sie das tun, dann kann die KI ihre Einzelleistungen sogar locker übertreffen. Dies ist aber nur für ganz einfache Fragestellungen möglich, bei denen es ausreicht, zwischen den Einzelmeinungen zu mitteln. Wenn die Geschichte komplexer wird, ist der statistische Mittelwert nicht die gesuchte Lösung (schwarzer Schwan).

b) Generative KI

Beispiele: ChatGPT und alles was künstliche Texte und Bilder erstellt.
Hier baut das KI-Resultat ganz klar auf real vorhandenen Bestandteilen auf, z.B. realen Bildern, die raffiniert kombiniert werden und realen menschlichen Äusserungen, die als Textbausteine  zusammengestellt werden. Deshalb wirkt das auch so echt. Wir sollten uns aber von der generativen KI nicht täuschen lassen. Niur die Teile sind echt, die Zusammenstellung ist künstlich.

Die Gefahren der KI

Im Fall der analytischen KI droht die Überbetonung des statistischen Mittels («reduce to the mean«). Bei klaren Aufgabenstellungen, z.B. der medizinischen Beurteilung von Blutbildern, ist das ganz ok und sehr hilfreich. Bei komplexen Fragestellungen führt das aber zu einem Einheitsbrei (z.B. die Musikprogramme der Radiosender, die immer gleich klingende Hits bringen). Das bringt die menschliche Kultur nicht wirklich vorwärts.

Im Fall der generativen KI wird es aber wirklich gefährlich. Hier kann effektiv und bewusst gelogen werden. Je besser die generative KI wird, umso schwieriger wird es. das Fake zu erkennen. Gleichzeitig erkennen aber immer mehr Menschen, wie einfach solche Fakes zu erstellen sind – und dann verlieren sie hoffentlich zunehmend ihre Wirkung. Doch auch die Qualität der Fakes steigt. Wir können also gespannt sein, was die Zukunft bringt.

Die Schwächen der Künstlichen Intelligenz (KI)

Die Datenverabeitungs-Methode der Neuronalen Netze – allgemein und fälschlicherweise als KI, also als «Künstliche Intelligenz» bezeichnet – ist erstaunlich leistungsfähig, wenn sie richtig eingesetzt wird.

Manche fürchten sie und schreiben ihr einen eigenen Willen zu. Denn die KI eignet sich perfekt, um bei dafür empfänglichen Menschen Ängste vor einer mächtigen und undurchschaubaren Intelligenz auszulösen. Diese Ängste werden von der Unterhaltungsindustrie seit vielen Jahren bedient, um uns einen grusligen Kitzel zu verschaffen.

In der Realität sehen die Gefahren allerdings ganz anders aus. Die Neuronalen Netze (NN) sind mächtig, leiden aber unter bemerkenswerten Schwächen. Diese Schwächen sind für Laien nicht auf den ersten Blick erkennbar. Die IT-Experten kennen sie, doch wir müssen nicht erwarten, dass diejenigen, die mit KI Geld verdienen, viel Zeit verlieren, uns die Probleme im Detail zu erklären.

Ein Blick auf die Wirkweise der NN zeigt diese Schwächen klar. Er zeigt, wie die Resultate der NN zustande kommen, nämlich über eine riesige Datensammlung von Musterbeispielen, dem Lernkorpus. Die NN werten diesen Datenkorpus raffiniert aus – doch so raffiniert die Auswertung auch ist, die NN finden nur, was bereits im Korpus steckt. Alles was nicht drin steckt, wird nicht erkannt. Die NN ist somit völlig abhängig vom Korpus.


Das führt zu folgenden Schwächen:

Ineffizienz: Die Ursache

Das Aufwand/Nutzen Verhältnis von KI-Lösungen ist extrem schlecht. Riesige Mengen an Rohdaten, d.h. an Musterbeispielen sind nötig, um daraus die einfachsten Schlüsse zu ziehen. Die Schlüsse werden statistisch gezogen, deshalb braucht jeder Schluss unzählige Musterbeispiele. Ein einziges Beispiel ist statistisch irrelevant, mehr sind besser und erst richtig viele sind wirklich verlässlich. Jeder Statistiker weiss das. Auch die KI-Betreiber wissen das. Deshalb sind sie auf riesige Datenmengen angewiesen. Das hat Konsequenzen.

Ineffizienz: Riesige Serverfarmen

Wissen erscheint uns immateriell und ein Gedanke braucht praktisch keine Energie. Für die KI ist das aber nicht der Fall. Im Gegenteil, um die riesigen für die NN nötigen Datenmengen zu speichern und zu verarbeiten sind auch riesige Serverfarmen nötig. Ihr Energieverbrauch ist wirklich sehr gross. Und auf diese Serverfarmen sind die Neuronalen Netze angewiesen, da sie erst mit richtig vielen Musterdaten in die Gänge kommen und unzählige  Rechenschritte nötig sind, um aus dem Wust von Daten statistische Schlüsse zu ziehen. Neuronale Netze sind deshalb erst dann verlässlich, wenn genügend Beispiele gesammelt und durchgerechnet sind. Dazu stellen die Internetgiganten riesige Serverfarmen auf. Der Energiebedarf der KI wird schnell übersehen.

Ineffizienz: Abnehmender Grenznutzen

Die Resultate der NN sind um so verlässlicher, je kleiner die Zahl der möglichen Outcomes ist. Sobald mehr unterschiedliche Resultate möglich sind, steigt der Bedarf an Musterdaten und an Rechenzeit. Die Steigung ist nicht linear. Wenn die KI nur zwischen zwei Ergebnissen (z.B. männlich/weiblich) unterscheiden will, braucht sie relativ wenige Muster. Um vier Zustände zu unterscheiden, braucht sie aber nicht doppelt so viel, sondern ein Vielfaches mehr. Der Korpusbedarf steigt mit der Zahl der jeweils möglichen Ergebnissen (Outcomes) nicht linear, sondern exponentiell.

Ineffizienz: Nur Grosse können mithalten

Beim dem grossen Daten- und Rechenbedarf der KI ist klar, dass einzelne Forscher das gar nicht stemmen können. Auch kleinere Unternehmen können das nicht. Erst die richtig die Grossen wie Meta, Amazon, Alibaba usw. können hier mitspielen.

Selektionsbias: Unvermeidlich

Die Daten im Korpus entscheiden über die Antworten der KI. Deshalb spielt es eine grosse Rolle, welche Daten gesammelt werden. Das führte in der Vergangenheit zu Ergebnissen, die für die KI-Ersteller so unerwartet wie unwillkommen waren. So hat ein Versuch von Microsoft dazu geführt. dass der Chatbot Naziparolen ausgab, einfach weil unvorsichtigerweise Nazitexte in den Korpus eingeflossen sind. Auch ein Versuch in China soll fehlgelaufen sein, der Bot soll durch falsche Fütterung dazu gebracht worden sein, die kommunistische Partei zu kritisieren. Beides war wohl nicht im Sinn der Betreiber. Doch weil der KI-Mechanismus sich an den Korpus halten muss (das ist das Prinzip), kann er gar nicht anders als die Aussagen des für seine Programmierung gewählten Korpus zu verwenden.

Intransparenz: Korrekturen sind sehr aufwendig

Die Schlüsse der KI erfolgen auf raffinierte Weise aus den Rohdaten. Das kann sehr gut funktionieren, doch wenn es zu Fehlern kommt (siehe oben), ist das Fehlverhalten kaum zu korrigieren. Dies liegt in der Intransparenz des Prinzips, mit dem Neuronale Netze funktionieren. Ganz viele Einzeldaten führen auf statistische Weise zum jeweiligen Schluss, sodass am Ende nicht mehr zu eruieren ist, welcher/welche Datensätze genau verantwortlich sind für das jeweilige Resultat. Korrekturen von offensichtlichen Fehlschlüssen sind deshalb aufwendig und unsicher und können ihrerseits zu weiteren Fehlern führen.

Lücken: Der schwarze Schwan

Das ist die entscheidende Lücke der Neuronalen Netze. Die NN benützen nicht nur die Daten im Lernkorpus für ihre Schlüsse, vielmehr stellen diese Daten für die NN die gesamte Welt dar. Was nicht im Korpus ist, wird nicht erkannt. Und wenn der schwarze Schwan es trotzdem in den Korpus geschafft hat, wird er von der grossen Überzahl weisser Schwäne als statischer Ausreisser automatisch ausgeblendet.

Verflachung: Reduce to the mean

Was häufig ist, ist häufig. Doch es gibt immer auch Ausnahmen und oft sind es gerade die Ausnahmen, auf die es ankommt. Wenn z.B. ein Radioprogramm sich statistisch am Musikgeschmack der Mehrheit orientiert, werden interessante Musikstücke nicht gespielt. Das mag im Interesse des Radioprogramms liegen, das damit seine Reichweite verbessert. Die Intelligenz der KI hilft dem Radiosender, doch wenn das alle Radiosender machen, verflacht die Musik.

Das gleiche gilt für Texte und Bestrebungen in der Forschung. Wirklich Neues wird so nicht gefunden. Die KI hilft zwar, bewährtes Wissen und bewährte Techniken abzusichern, doch wirklich Neues liegt ihr fern.


Was steckt hinter der KI? 

Hinter der KI steckt eine bestimmte Technik der Informationsverarbeitung, die mit Neuronalen Netze operiert.
Neuronale Netze funktionieren
– rein statistisch
– mit Hilfe einer riesigen Datensammlung

Es lohnt sich, die Grundzüge der Wirkweise dieser Methode zu kennen, um KI einordnen zu können. Eine gut verständliche Übersicht finden Sie hier:

«Wie die künstliche Intelligenz zu ihrer Intelligenz kommt»

Das Buch richtet sich an alle, die in ihrem Alltag mit KI zu tun haben und wissen wollen, was da eigentlich passiert.


 

Das semiotische Dreieck

Wörter und ihre Objekte

Wenn wir sprechen, verwenden wir Wörter, um die Gegenstände unserer Umgebung zu bezeichnen. Mit den Wörtern besitzen wir die Gegenstände aber nicht, sondern bezeichnen sie nur, und wie wir alle wissen, sind Wörter nicht identisch mit den bezeichneten Gegenständen. Dass keine Identität besteht, ist offensichtlich.

Beispiele für die nicht immer logische Wortgebung finden Sie in diesem Beitrag, indem erklärt wird, weshalb die Leise laut spielt und die Laute leise.

    Abb. 1: Das Piano (Das Leise)

   Abb.2: Die Laute (Das Holz)

Wie aber sieht die Beziehung zwischen Wörtern und Gegenständen aus, wenn sie keine Identität ist? Sie kann keine 1:1-Beziehung sein, denn wir bezeichnen verschiedene Gegenstände mit dem gleichen Wort und können umgekehrt mehrere Wörter für denselben Gegenstand verwenden. Die Beziehung ist auch nicht fix, denn je nach Kontext bedeutet das gleiche Wort etwas anderes. Wörter ändern sich unaufhaltsam mit der Zeit, sie ändern ihren Klang und ihre Bedeutung.

Der Bezug von Worten und bezeichneten Objekten wird sehr erhellt durch die berühmte Darstellung des semiotischen Dreiecks von Ogden und Richards1 von 1923.

 

Das semiotische Dreieck

 

Abb 3: Das Semiotische Dreieck nach Ogden und Richards1

Die Idee des Dreiecks hat viele Vorläufer. u.a. Gottlob Frege, Charles Peirce, Ferdinand de Saussure und Aristoteles.

Ogden und Richards machen mit dem semiotischen Dreieck darauf aufmerksam, dass wir Worte, Objekte und Begriffe nicht verwechseln sollen. Die drei Spitzen des Dreiecks zeigen nämlich auf drei Bereiche, die von ihrer Natur her völlig verschieden sind.

Das Heikle dabei ist, dass wir nicht nur versucht sind, sondern dass wir zu Recht nichts anderes tun, als die drei Spitzen zusammenzubringen, so als wären sie identisch. Wir wollen nämlich, dass das Wort ein Objekt genau bezeichnet. Wir wollen, dass unsere Begriffe genau mit den Wörtern, die wir dafür verwenden übereinstimmen. Trotzdem sind die Wörter nicht die Objekte und auch nicht Begriffe.

Ogden und Richards sagen dazu: «Zwischen dem Symbol [Wort] und dem Referenten [Objekt] gibt es keine andere relevante Beziehung als die indirekte, die darin besteht, dass das Symbol von jemandem [Subjekt] dazu benutzt wird, einen Referenten zu vertreten.»

Der Bezug zwischen dem Wort (Symbol, Zeichen) und dem Objekt (Referent) ist stets indirekt und verläuft über den Gedanken von jemandem, d.h. das Wort aktiviert ein gedankliches Konzept von ‹jemandem›, d.h. von einem menschlichen Subjekt, Sprecher oder Zuhörer. Dieses gedankliche Konzept ist der Begriff.

Abb. 4: So sehen Ogden und Richards den indirekten Bezug zwischen Symbol und bezeichnetem Objekt (Referent) –> Die abgeschwächte Basislinie findet sich auch im Original. Symbol (Wort) und Referent (Bezugsobjekt) sind nur indirekt über den Gedanken in den verstehenden Subjekten miteinander verbunden.

Wenn wir uns mit Semantik beschäftigen, ist es unverzichtbar, einen Blick auf auf das Dreieck zu werfen. Nur die Begriffe in unserem Kopf verbinden die Wörter mit den Gegenständen. Eine direkte Verbindung ist eine Illusion.


Dies ist ein Beitrag zum Thema Semantik.


1 Ogden C.K. und Richards I.A. 1989 (1923): The Meaning of Meaning. Orlando: Harcourt.

 

Das Piano spielt forte und die Laute leise

Viele Leute glauben, dass jedes Wort eine bestimmte Bedeutung hat. Weil das nicht so ist, müssen wir, wenn wir Semantik betreiben, die Bedeutungen der Wörter aus dem Kontext erschliessen.

Der Kontext ist beim Wort ‹Piano› eigentlich schnell klar, er ist meistens ein musikalischer. In der klassischen Musik sind italienische Wörter angesagt, weil Italien einst das Hochland der Musik war, und Wörter wie «Andante›, ‹Sonate›, ‹Tutti› und ‹Coda› zeugen davon. So auch das ‹Pianoforte›, das Instrument, das leise (ital: piano) und laut (ital: forte) spielen kann, im Gegensatz zum Cembalo, aus dem heraus es sich entwickelt hat. Von ‹Pianoforte› hat sich der Name dann zum ‹Piano›, dem ‹Leisen›, abgeschliffen. Genauso wie das Violoncello (die kleine Violone) zum Cello (dem «Kleinen») wurde. Das Piano heisst auf Deutsch auch Klavier. Dieses Wort kommt von Clave, dem Schlüssel. Mit Schlüssel sind die Tasten gemeint. Auf Englisch gibt es digitale Pianos, d.h. Keyboards, also Schlüsselbretter. Der ‹Flügel› ist kein Vogelflügel und auch kein Engelsflügel, sondern ein grosses Klavier, oder Englisch ‹Grand Piano›. Die Orgel wiederum heisst in England Organ, also gleich wie ein Organ, wie z.B. die Leber.

Die Instrumente haben es auch sonst in sich. Die ‹Violine› ist – mit dem ‹-ine› die Verkleinerung einer ‹Viola›. Die Viola ist das Geigeninstrument, das in Altlage spielt. Sie heisst auch Bratsche, was von Arm (ital: braccio) kommt, da die Bratsche mit dem Arm gehalten wird. Im Gegensatz zu den Gamben, die auf den Beinen (ital: gambas) stehend gespielt werden. Aber auch die Violine, die ‹kleine Viola›, die keine Bratsche (Altlage) ist, wird mit dem Arm gehalten. Neben der Violine (Sopranlage) gibt es auch die Geige in Basslage, die Violone, die auch Kontrabass (engl. double bass) oder Bassgeige heisst, und von der das Cello (Violoncello) die kleine Schwester ist. Cello und Bassgeige werden zwischen die Beine gestellt, sind also keine Bratschen. Sie sind aber auch keine Gamben. Gamben sind nämlich keine Geigen, obwohl ebenfalls Streichinstrumente. Sie haben aber eine etwas andere Form, einen etwas anderen Klang und Bünde, wie die Gitarren.

Die Vorläufer der Gitarren sind die Lauten, ebenfalls Saiteninstrumente, die im Gegensatz zu den Geigen aber gezupft und nicht gestrichen werden. Obwohl ihr Name darauf hindeuten könnte, dass sie laut spielen, sind sie in der Tat eher leise. Der Name hat auch gar nichts mit der Lautstärke zu tun (im Gegensatz zum Pianoforte), sondern kommt aus dem Arabischen. Dort heissen die Lauten ‹Ud›, mit Artikel ‹Al Ud› (männlich). In Europa heisst sich das ‹Al Ud› zu ‹La Ud› geschlechtsgewandelt und wir haben die Laute.

Der Stamm ‹Ud› im Wort Laute bedeutet ursprünglich Holz. Die Laute ist also ‹das Holz›, genauso wie Trompeten und Posaunen im Orchester ‹das Blech› genannt werden. Die Streicher im Symfonieorchester sind aber nicht ‹das Holz›, obwohl sie aus Holz sind, sondern ‹die Streicher›. ‹Das Holz›, das sind die Holzbläser, also die Flöten und Oboen. Bei den Oboen steckt das auch im Wort: Oboe = haut bois = hohes Holz. Die Querflöten sind heute aus Metall, gelten aber weiterhin als Holzblasinstrumente. Ebenso die Saxophone, obwohl sie schon immer aus Blech sind. Die Hörner sind in der klassischen Musik Blechblasinstrumente aus Metall, mit Nähe zur Jagd. Im Jazz hingegen sind auch die Saxophone Hörner (horns).

Die Welt der Wörter und ihrer Bedeutungen ist voll von Widersprüchen. Simple Logik führt uns schnell in die Irre. Um computergängige Semantik zu betreiben, muss man sich auf einiges gefasst machen 😉


Dies ist ein Beitrag zum Thema Semantik.


Vier Versuche, Semantik formal zu packen

Semantik: Was steckt hinter den Wörtern?

Das Thema Semantik interessiert heute viele Leute. Viele realisieren, dass Wörter nicht alles sind, sondern dass hinter den Wörtern Bedeutungen stecken, die sehr variabel sind und auf die es eigentlich ankommt. Gerade im Internet spielt das eine grosse Rolle. Je grösser das Netz wird, umso schwieriger wird die Suche. Was ist, wenn die gesuchte Adresse unter einem ganz anderen Wort zu finden ist, als ich annehme? Denken wir nur an die vielen Synonyme. Dazu kommen Ober- und Unterbegriffe und unterschiedliche Sprachen. Ideal wäre es, wenn ein sprachunabhängiges System der Bedeutungen existieren würde, ein System, dass Synonyme genauso kennt wie verschiedene Sprachen, Englisch, Französisch, Deutsch, Arabisch, Chinesisch etc. Dann müsste man nur noch die Wörter der jeweiligen Sprache in das semantische System hineinprojizieren. Geht das?

Versuch 1: Semantische Annotation (n:1)

Eine einfache «Semantische Annotation» ist für viele die naheliegende Lösung. Dabei gilt es, jedem Wort seine Bedeutung, d.h. seine eigentliche Semantik, zuzuweisen.

Nehmen wir eine Sprache, z.B. Deutsch und eine Domäne, z.B. Medizin. Das Ziel der semantischen Annotation wäre dann, das gesamte Vokabular der Domäne, also alle ihre Wörter auf eine grundlegende Semantik abzubilden. In dieser existiert dann ein einziger Punkt für den Begriff «Fraktur», und dieser semantische Zielpunkt wird erreicht durch Wörter wie «Fraktur», «Knochenbruch», «fracture», etc. Es handelt sich ja in der Tat um dasselbe, unabhängig davon, welche Wörter ich verwende. Das gilt auch für «Bruch», z.B. in «Beinbruch», «Bruch des Beins», «Bruch der Tibia» und «Bein gebrochen».

Alle diese Formulierungen müssen auf den gleichen semantischen Punkt kommen. Dabei können wir nicht auf die Grammatik gehen, sondern müssen Wörter auseinandernehmen können (Beinbruch), und aus Verben (gebrochen) Substantive machen können. Brüche gibt es viele, solche von Knochen, aber auch von Leisten, Ehen, Implantaten, Brillen etc. Eine einfache Annotation wird daraus kaum werden, sicher keine 1:1 oder n:1 Annotation.

Und wenn verschiedene Fachgebiete gemischt werden, wird es noch heikler: Ein Bruch ist ja nicht nur ein Knochenbruch, sondern auch ein Bruch in der Mathematik. Also etwas ganz anderes. Wie annotiere ich «Zürich»? Als Stadt, als Kanton, als Versicherung? «Berlin» kann je nach Kontext auch für das deutsche Kanzleramt stehen; ein «Berliner» ist ein Bürger oder eine Backware.

Fazit: Eine semantische Annotation ist komplex und ganz gewiss nicht mit einer einfachen n:1 Tabelle lösbar. Um wirklich semantisch zu annotieren, d.h. den Wörtern Bedeutungen zuzuweisen, muss man tiefer in die eigentliche Semantik einsteigen.

Versuch 2: Semantic Web

Initiator des Semantic Webs war der berühmte WWW-Erfinder Tim Berners-Lee. Seine Beobachtung war, dass im WWW die gesuchten Seiten zwar oft vorhanden, aber in der Fülle nicht auffindbar waren. Dem wollte er abhelfen, in dem er das Web selber semantisch machen wollte. Also nicht mehr die Anwender sollten die Semantik (Inhalte) der Internetseiten ergründen, sondern Berners-Lee’s Idee war, dass die Seitenanbieter im WWW ihre Semantik selber deklarieren. Auf diese Weise wäre gesuchte Annotation bereits verhanden. Und zwar nicht einfach als isolierter Punkt, wie «Zürich», sondern typisiert, also z.B. als «Stadt: Zürich». Die Typisierung ist ein echter und zweckmässiger Fortschritt. Der Charme der Typisierung besteht darin, dass die Mehrdeutigkeit angegangen werden. Ob Zürich nun die Stadt, den Kanton oder die Versicherung meint, kann durch ein entsprechend gebautes semantisches Netz klar unterschieden werden.

Das Problem ist nur: Welcher Seitenbetreiber macht sich die Mühe, seine Seite entsprechend semantisch zu verschlagworten? Und das Ganze funktioniert nur, wenn sich alle an das gleiche Einordnungssystem halten. Dazu kommen weitere Probleme, die sehr typisch sind für Versuche, ein semantisches Netz zu bauen. Ein solches Netz zu erstellen ist alles andere als banal, denn der Teufel steckt im Detail.

Und sobald das Netz einmal steht, kann es nicht mehr so einfach verändert werden. Das führt dann schnell zu faulen Kompromissen, Komplizierungen, Unschärfen, Varianten und Diskussionen.

Die grundlegende Frage dabei ist: Wie strukturieren wir das semantische Netz? Ich meine die abstrakte formale Struktur. Gibt es Oberbegriffe? Eigenschaften? Überschneidungen? Wie werden sie formal dargestellt? Gibt es eine «Logik» in der Semantik? Wir sind hier im Kern der wissenschaftlichen Semantik und meine Behauptung ist, dass die Scientific Community hier noch einiges dazuzulernen hat. Das Semantic Web basiert z.B. auf der RDF und OWL, zwei komplexen formalen Sprachen, welche kompliziert, unhandlich und trotzdem in ihren Möglichkeiten beschränkt sind.

Wenn die Annotation von den Seitenanbietern durchgeführt wird, können wir wegen des dafür nötigen Aufwands keine Durchgängigkeit und auch keine Einheitlichkeit erwarten.

Ideal wäre eine Software, welche die semantische Interpretation selbstständig und von aussen, also auf vorbestehende und frei formulierte Texte durchführen kann. Gibt es die? –

Die Antwort ist ja. Es gibt sogar zwei Herangehensweisen, die eine ist statistisch, die andere ist semantisch. Schauen wir zuerst die statistische an:

Versuch 3: Neuronale Netze (KI)

Neuronale Netze (NN) sind besser bekannt unter dem Namen «Künstliche Intelligenz«. Diese Systeme funktionieren über einen Lernkorpus, der viele Muster von Zuweisungen enthält, die vom NN maschinell  auf raffinierte Weise integriert werden. Anschliessend ermöglicht das NN weitere, bisher unbekannte Inputs auf die gleiche Weise zu verarbeiten wie im Lernkorpus. Es hat also die Interpretation «gelernt». Das kann sehr beeindruckend sein, und auch sehr nützlich. Allerdings kann das NN nichts wiedergeben, was nicht im Lernkorpus auf ähnliche Weise vorgegeben war. Die bekannten Schwächen der NN sind:

– Riesiger Lernkorpus nötig.
– Nur was im Korpus enthalten ist, kann erkannt werden.
– Seltenes mit grossen Auswirkungen (Black Swan) wird übersehen.
– Intransparenz der Schlüsse.
– Fehler im Korpus sind kaum korrigierbar.

Trotzdem sind Neuronale Netze für viele Anwendungen unglaublich effizient. Doch sie sind nicht semantisch. Sie urteilen nicht nach den Bedeutungen der Wörter, sondern nach statischen Gesichtspunkten. Was häufig zusammen vorkommt, gehört für sie zusammen. Das ist natürlich alles andere als sicher. Seltenere Bedeutungen fallen so unter den Tisch. Und was bedeuten die Wörter und Sätze überhaupt? Neuronale Netze zeigen nur statistische Nähe und überlassen die Bedeutungen dem Leser. Formale Musterekennung ist eine Stärke der Neuronalen Netze. Semantik nicht. Die Lösungen von Versuch 2, das Semantic Web der RDFs and OWL waren da schon näher dran.

Allerdings: In der Praxis haben die NN der kommerziellen Software-Anbieter die akademisch fundierten Versuche des Semantic Webs deutlich überholt. Die NN sind zwar nicht semantisch, aber sie sind im gegensatz zum Semantic Web real einsetzbar.

Ideal wäre jedicg eine Lösung, welche die Bedeutungen der Wörter auf eine ähnliche Weise findet, wie wir Menschen. Also ein Ansatz, der wirklich semantisch ist. Gibt es diesen?

Versuch 4: Begriffsmoleküle (BM)

Begriffsmoleküle sind eine Parallelentwicklung zum Semantic Web. Wie dieses setzen sie eine semantische Modellierung der anvisierten Wissensdomäne voraus. Der Unterschied liegt in der Art, wie die Semantik modelliert wird und wie Schlüsse gezogen werden. Sowohl das OWL des Semantic Web wie die alternativen Begriffsmoleküle sind regelbasiert, im Gegensatz zu den Neuronalen Netzen der KI, die korpusbasiert sind. Als regelbasierte Systeme sind OWL und BM transparent und können Schritt für Schritt untersucht werden. Ihre Begriffe zeigen eine klare Anordnung (semantische Architektur). Ihre Schlüsse sind formal geregelt. Das ist die Gemeinsamkeit. Der Unterschied liegt in der Art der semantischen Architektur und der Art der Schlussziehung (Inferenzmechanismus). Generell lässt sich sagen, dass die BM freier und offener sind als OWL.

Wie ist es möglich, eine freie und dynamische Semantik darzustellen und dabei so formal zu bleiben, dass unsere Gedanken für eine Maschine nachvollziehbar ist? Begriffsmoleküle versuchen genau das. Es geht dabei darum, zu modellieren, wie wir den gehörten Wörtern Bedeutungen zulegen.


Dies ist ein Beitrag zum Thema Semantik.


 

Mathematik und Physik

«A mathematician may say anything he pleases, but a physicist must be at least partially sane»
(Josiah Williard Gibbs)

«Ein Mathematiker kann sich irgendetwas ausdenken und es innerhalb der Mathematik beweisen. Ob es in der Realität funktioniert, zeigt die Realität.»
(hrs)


Ich mag Mathematik

Ich mag Mathematik. Darin unterscheide ich mich von den meisten meiner Freunde; die meisten wollen möglichst nichts mit Mathematik zu tun haben. Das hat nichts mit der Intelligenz meiner Freunde zu tun – vielmehr bestreiten sie, dass Mathematik für sie persönlich hilfreich sein könnte.

Das ist das eine Lager, quasi das Hauptlager der Menschheit. Im Gegenlager finden sich die Menschen, welche glauben, dass die ganze Welt aus nichts als aus Mathematik besteht. Wenn wir nur die Axiome – z.B. der Mengenlehre – akzeptieren, könnten wir daraus die ganze Welt aufbauen.

Ich verrate kein Geheimnis, wenn ich gestehe, dass ich mich weder zum einen noch zum anderen Lager zähle. Mathematik ist ein unglaublich scharfes Werkzeug und ermöglicht tiefe Erkenntnisse über das Funktionieren unserer Welt. Gleichzeitig ist Mathematik prinzipiell von ihrem Wesen her beschränkt, so kräftig und überzeugend sie in ihrem ureigenen Bereich auch ist.

Die spannende Frage für mich ist: Wie ordnet sich die Mathematik in die Realität ein?


Abgeschlossenes System

Eine charakteristische Eigenheit der mathematischen Welt ist, dass abgeschlossene Systeme untersucht werden, z.B. die Menge der natürlichen Zahlen. Abgeschlossene Systeme können konsequent und logisch untersucht werden, und die gewonnen Aussagen sind deshalb sehr sicher wahr – für das untersuchte System.

Obwohl die Menge der natürlichen Zahlen unendlich ist, ist sie doch abgeschlossen, insofern, als die Grenzen klar sind: für jede Zahl kann ausgesagt werden, ob sie zur Menge gehört oder nicht: 25399275933184 z.B. gehört dazu, nicht aber 1/2, π oder -1 .

Vorteil Mathematik: Die Abgeschlossenheit mathematischer Systeme ist die Basis für die Sicherheit der Aussagen. Weil das System geschlossen ist, können (fast! ← Gödel) alle Aussagen klar auf ihren Wahrheitswert überprüft werden.

Nachteil Mathematik: Die Aussagen gelten aber nur für das geschlossene System. Die reale Welt ist immer offen.

Konsequenz: Mathematische Systeme beschreiben eindrücklich das Verhalten physikalischer Objekte und Systeme. Allerdings sind letztere stets offen. Das stellt uns vor die Aufgabe, die Wahl des passenden mathematischen System sehr sorgfältig zu überprüfen und gegebenenfalls anzupassen. Wahl und Anpassung des mathematischen System erfolgen logischerweise stets ausserhalb des mathematischen Systems.


Abstraktion

Mathematik ist platonisch; d.h. die Elemente der Mathematik sind ausserhalb von Raum und Zeit. Nur so können sie ‹ewig› gültig sein.

Physik hingegen beschäftigt sich mit Objekten, die sich innerhalb von Raum und Zeit befinden.

Die Abstraktion (Mathematik) ist immer einfacher als die Verhältnisse (Physik), auf die sie sich bezieht.

Vorteil Mathematik: Mathematische Wahrheiten sind zeit- und ortsunabhängig. Die Wahrheit (Widerspruchsfreiheit) kann innerhalb des Systems (meistens! ← Gödel) bewiesen werden. Sobald eine mathematische Wahrheit einmal mathematisch korrekt  erkannt ist, erübrigen sich weitere Diskussionen über ihren Wahrheitswert.

Nachteil Mathematik: Mathematische Aussagen gelten nur innerhalb der Mathematik, d.h. innerhalb der Abstraktion. Gelten sie auch ausserhalb, d.h. in der Realität? Diese Frage kann nicht innerhalb der Mathematik abschliessend beantwortet werden. – Weshalb nicht? Antwort: Die Korrektheit der Schlüsse gilt nur innerhalb der Abstraktion, doch ist die Abstraktion auf die Realität anwendbar? Diese Frage kann eben nicht innerhalb der Mathematik beantwortet werden, da sie die Abstraktion prinzipiell überschreitet.


Die hilfreiche Mathematik und ihre Grenze

Abb 1:Abstraktion und geschlossenes System
(IPT = Interpretationstheorie)

Die Physik versucht, ihren Stoff in eine mathematische Form zu bringen. Dabei ist sie höchst erfolgreich, was nicht nur für die Leistung der Physiker, sondern auch für die Eignung, Raffinesse und Kohärenz der mathematischen Modelle spricht.

Doch die entscheidende Frage kann nur in der Realität, d.h. von der Physik beantwortet werden, nämlich:

Ist die Abstraktion korrekt, d.h. ist das – immer vereinfachte! – mathematische Modell auch anwendbar? – Diese Frage kann nur ausserhalb von der Mathematik beantwortet werden.


LDC – mehr als ein Zettelkasten

LDC steht für «Logodynamische Karten» und ist ein neuartiges Browser-Programm.

Die Basis ist ein digitaler Zettelkasten, in dem Sie ihre Notizen festhalten und beliebig anordnen. Sie können spontan Ihre neuen Ideen festhalten, interessante Seiten im Internet damit verbinden, Stichwörter zu Texten ausbauen und Informationen strukturieren und immer wieder neu zusammenstellen.

Als Benutzer können Sie Ihre Karten mit anderen Benutzern austauschen. Zudem bietet Ihnen LDC die Möglichkeit, die Logik von Meinungen und Argumenten auf eine neuartige Weise visuell am Bildschirm darzustellen.

LDC steht für Sie bereit! Besuchen Sie die LDC-Startseite!

Wie unsere Tonleitern entstanden sind

Tonleitern

Als Amateurpianist interessiert mich das Thema Tonleitern seit langem:
  • Es gibt eine Vielfalt von Tausenden von unterschiedlichen Tonleitern
  • Alle diese Tonleitern gehen über genau eine Oktave – weshalb?
  • Was haben die verschiedenen Tonleitern sonst noch gemeinsam?
  • Und weshalb?
  • Und worin unterscheiden sie sich?
  • Gibt es eine Logik darin?
Als Informatiker interessiert mich die Struktur innerhalb der Tonleitern. Die Mathematik hinter den Tonleitertönen besteht offensichtlich aus einfachen Brüchen:
  • Lässt sich diese einfache Mathematik aus der Physik herleiten? Wenn ja, wie?
  • Lassen sich auch unsere subjektiven Empfindungen mit dieser einfachen Mathematik vereinbaren?
  • Wenn ja, wie?

Das Erstaunliche ist: Diese scheinbar rhetorischen Fragen habern alle ganz klare Antworten.

–> Mehr zur Herkunft unserer Tonleitern

Drei Welten

Zum Thema des Ursprungs der Tonleitern bin ich über die Drei-Welten-Theorie von Roger Penrose gelangt, als ein Anwendungsbeispiel für seine drei Welten:

  • die platonische = mathematische,
  • die physikalische und
  • die mentale = subjektive Welt.

Die Tonleitern erwiesen sich bei meiner Untersuchung als überraschend einleuchtendes Beispiel für das Zusammenspiel der drei Welten.

–> Penroses Drei-Welten-Theorie

Resonanz

Die zweite Überraschung war für mich die ganz entscheidende Rolle – nicht der Obertöne wie in der gängigen Literatur, sondern der Resonanz zwischen den Frequenzen. Die Resonanz lässt sich

  • einfach physikalisch begründen (physikalische Welt),
  • einfach als Bruch darstellen und für die weiteren Überlegungen verwenden (mathematische Welt)
  • und erklärt einleuchtend die Intervalle innerhalt der Tonleitern und ihre Beziehungen (mentale Welt)

Als weitere Überraschung zeigte sich, dass das Phänomen der Resonanz Musik und Quantenphysik verbindet. Die Verbindung ist einfach und offensichtlich. Resonanzphänomene sind überall.

–> Die Rolle der Resonanz

Die 21. Reise und die künstliche Intelligenz

Littering im Weltraum ist nicht erst seit Elon Musks Starlink-Programm ein Thema und aktuell werden verschiedene Methoden zur Reinigung des zunehmend vermüllten Weltraums rund um unserer Erde diskutiert. Die Aufgabe ist nicht einfach, weil – aufgrund des zweiten Hauptsatzes, nämlich der unausweichlichen Entropiezunahme – jede Vermüllung die Tendenz hat, exponentiell zuzunehmen. Wenn eines der Tausenden von Schrottteilen im Weltraum von einem anderen Schrottteil getroffen wird, entstehen aus dem einen getroffenen Stück viele neue, mit irrer Geschwindigkeit herumfliegende Teile. Das Weltraumvermüllung ist also ein Selbstläufer mit zunehmend exponentieller Tendenz.

Aber kennen wir dieses Problem nicht schon lange? In den 60-er Jahren hatte der polnische Schriftsteller Stanislaw Lem bereits darüber geschrieben. Ich holte deshalb seine Zusammenstellung der Reisen des Kosmonauten Ijon Tichys hervor. In der 21. seiner Reisen trifft dieser auf einen vermüllten Planeten. Tichy, der weitgereiste Kosmonaut, schreibt:

«Jede Zivilisation, die in der technischen Phase steckt, beginnt allmählich in den Abfällen zu versinken, die ihr gewaltige Sorgen bereiten.»

Des weiteren beschreibt Tichy, wie deshalb die Abfälle in den Weltraum rund um den Planeten entsorgt werden, dort aber neue Probleme bereiten, was Folgen hat, die auch Kosmonaut Tichy zu spüren bekommt.

Doch die 21. Reise hat es aus noch ganz anderen Gründen in sich. Das Hauptthema dieser Reise ist – wie bei vielen Geschichten von Stanislaw Lem – die künstliche Intelligenz.

Tichy trifft auf dem jetzt gereinigten Planeten nicht nur auf eine weitere unliebsame Folge des zweiten Hauptsatzes (nämlich eine entartete Biogenetik), sondern auch auf einen Mönchsorden, der aus Robotern besteht. Diese Robotor diskutieren mit Tichy über die Bedingungen und Folgen ihrer künstlichen Intelligenz. So sagt z.B. der Roboterprior über die Beweiskraft von Algorithmen:

«Die Logik ist ein Werkzeug» erwiderte der Prior, «und aus einem Werkzeug resultiert nichts. Es muss einen Schaft und eine lenkende Hand haben.» (S. 272, Lem)

Ich selber bewegte mich – ohne dass mir der Zusammenhang und die mögliche Beeinflussung meiner Gedanken durch Stanislaw Lem bewusst war – ganz auf den Spuren von Lems Roboter-Priors und schrieb:

«Eine Instanz (Intelligenz) […]  muss zwecks Beurteilung der Daten den Bezug zwischen den Daten und dem Beurteilungsziel herstellen. Diese Aufgabe ist immer an eine Instanz mit einer bestimmten Absicht gebunden.» (Straub 2021, S. 64-65)

Lem hat bereits vor 50 Jahren  formuliert, was meines Erachtens den prinzipiellen Unterschied zwischen einer Werkzeug-Intelligenz und einer belebten (d.h. biologischen) Intelligenz ausmacht – nämlich die Absicht, welche die Logik lenkt. Bei der Maschine fehlt sie, bzw. wird sie von aussen (von wem?) eingebeben. Die menschliche Intelligenz hingegen kann – wenn wir keine Roboter sein wollen – ihre Ziele selber bestimmen. Sie besteht in den Worten von Lems Prior nicht nur aus der Logik, welche von der lenkenden Hand geführt wird, sondern beinhaltet die lenkende Hand mit.

Als Konsequenz dieser Überlegung folgt für mich bezüglich KI:

Wenn wir uns der technischen Möglichkeiten der KI bedienen (und weshalb sollten wir nicht?), dann sollten wir immer auch berücksichtigen, nach welchem Ziel unsere Algorithmen ausgerichtet sind.

Literatur

  • Lem, S. (1971) Sterntagebücher, Frankfurt am Main, Suhrkamp, 1978.
  • Straub, HR. (2021) Wie die künstliche Intelligenz zur Intelligenz kommt, St. Gallen, ZIM-Verlag.
  • Nowotny, H. (2021) In AI we Trust, Power, Illusion and Control of Predictive Algorithms, Cambridge/Medford, Polity Press.

Hat der Chatbot LaMDA ein Bewusstsein?

Die Diskussion um künstliche Intelligenz bleibt  aktuell, nicht zuletzt dank den Erfolgen von Google in diesem Bereich.

Aktuell ist die Diskussion um LaMDA, eine KI, die genau darauf trainiert wurde, Dialoge so zu führen als wäre sie ein echter Mensch. Offenbar so überzeugend, dass der Google-Mitarbeiter Blake Lemoine selbst anfing, ihr ein eigenes Bewusstsein zuzugestehen und sogar erwägt haben soll, einen Anwalt für ihre Rechte als Person zu engagieren.

Zu LaMDA und Lemoine, siehe z.B. https://www.derstandard.at/story/2000136501277/streit-bei-google-um-eine-ki-die-ein-eigenes-bewusstsein

Doch nicht alle Beobachter stimmen mit Lemoine überein. Frau Sarah Spiekermann von der Wirtschaftsuniversität Wien sagt im Interview mit Radio SRF vom 23.6.22:

«Da es [Googles KI-Programm LaMDA] kein Selbst hat, liest es einfach nur vor, was eingespielt ist … Aber das gibt dem Ding natürlich kein Bewusstsein. … Ich denke, da können wir sehr sicher sein, dass es kein Selbst hat, denn zu einem Selbst gehört ein Leben … Dazu gehört eine Möglichkeit, sich selbst zu beobachten … Ich merke, dass ich selbst bin und Maschinen können diese Selbstbeobachtung nie einnehmen … sie sind immer einlesende Entitäten.» (Hervorhebungen von mir, Original: https://www.srf.ch/audio/echo-der-zeit/kann-eine-kuenstliche-intelligenz-ein-bewusstsein-entwickeln?partId=12211826)

Frau Spiekermanns Darstellung geht konform mit meiner These, dass bewusste Intelligenz notwendigerweise mit Existenz verknüpft ist. Durch die eigene Existenz ergibt sich ein eigenes, d.h. nicht von aussen bestimmtes Interesse, nämlich das Interesse, am Leben zu bleiben – ein im eigentlichen Sinn vitales Interesse.


Die philosophische Frage, was Intelligenz ausmacht, kommt uns durch die Neuronalen Netze von Google und anderen auch im Alltag immer näher. In meinem Buch ‹Das interpretierende System› unterschied ich 2001 zwischen

a) trivialen Maschinen
b) einfachen interpretierenden Systemen
c) intelligenten, d.h. selbstlernenden System.

Spannend ist vor allem der Unterschied zwischen b) und c), also zwischen nur interpretierenden Systemen (z.B. LaMDA) und wirklich intelligenten Systemen. Dazu schrieb ich:

«Beide enthalten Regeln für die Beurteilung der Umwelt. Die Frage ist, wer die Regeln erstellt. Ein interpretierendes System muss die Regeln nicht notwendigerweise selbst generieren, es reicht aus, gegebene Regeln anzuwenden, um ein interpretierendes System zu sein. Ein System hingegen, das seine Regeln selbst findet, also selbstständig lernt, ist intelligent im eigentlichen Sinn. Dabei kommt das nun schon oft erwähnte selbstreferentielle Phänomen ins Spiel: Die Regeln sind ein essentieller Bestandteil des Systems, und ein System, das seine eigenen Regeln selbst anpasst, verändert sich selbst.» (Das interpretierende System, 2001, S. 90)

Selbstreferentialität (Spiekermann: ‹Selbstbeobachtung›) ist ein notwendiges Element von echter Intelligenz. Doch nicht nur Selbst-Beobachtung gehört dazu, auch die Möglichkeit sich selber zu verändern.

Drei Beobachtungen zur Künstlichen Intelligenz / 3

Was hat die biologische der künstlichen Intelligenz voraus?

Das Unwahrscheinliche einbeziehen

Neuronale Netze bewerten die Wahrscheinlichkeit eines Ergebnisses. Dies entspricht einem sehr flachen Denkvorgang, denn nicht nur das Wahrscheinliche ist möglich. Gerade eine unwahrscheinliche Wendung kann ganz neue Perspektiven öffnen, im Leben wie im Denken. Das automatische Vorgehen der neuronalen Netze aber ist ein Denkkorsett, das stets das Wahrscheinliche erzwingt.

Detaillierter differenzieren

Neuronale Netze werden umso unpräziser, je mehr Details sie unterscheiden sollen. Schon mit wenigen Resultatmöglichkeiten (Outcomes) sind sie überfordert. Biologische Intelligenz hingegen kann sich je nach Fragestellung in sehr differenzierte Ergebniswelten eindenken, mit einer Vielfalt von Ergebnismöglichkeiten.

Transparenz suchen

Weshalb komme ich im Denken zu einem bestimmten Ergebnis? Wie ist der Denkverlauf? Nur wenn ich mein Denken hinterfragen kann, kann ich es verbessern. Neuronale Netze hingegen können ihre Schlüsse nicht hinterfragen. Sie folgern einfach das, was der Korpus und dessen von aussen erfolgte Bewertung ihnen vorgeben.

Kontext bewusst wählen

Je nach Fragestellung wählt das menschliche Denken einen Kontext mit entsprechenden Musterbeispielen und bereits erkannten Regeln. Diese Auswahl ist aktiv und stellt das bewusste Moment im Denken dar: Worüber denke ich nach?

Die Auswahl des Kontexts entscheidet natürlich auch über die möglichen Outcomes und gültigen Regelmuster. Eine aktive Bewertung und Filterung des Kontexts erbringt die biologischen Intelligenz automatisch, sie liegt jedoch ausserhalb der Möglichkeiten eines neuronalen Netzes.

Zielorientiert denken

Was habe ich für Ziele? Was ist für mich wichtig? Was hat für mich Bedeutung? – Solche Fragen richten mein Denken aus; Aristoteles spricht von der «Causa finalis», dem Wozu, d. h. dem Ziel als Beweggrund. Neuronale Netze kennen kein eigenes Ziel, d. h. dieses steckt stets in der vorgängigen Bewertung des Korpus, die von aussen erfolgt. Das Ziel ist nichts, was das neuronale Netz selbstständig oder im Nachhinein verändern kann. Ein neuronales Netz ist stets und vollständig fremdbestimmt.

Eine biologische Intelligenz hingegen kann sich über ihre Ziele Gedanken machen und das Denken entsprechend verändern und ausrichten. Diese Autonomie über die eigenen Ziele zeichnet die biologische Intelligenz aus und ist ein wesentliches Element des Ideals des freien Menschen.

Fazit in einem Satz

Die künstliche Intelligenz der neuronalen Netze ist hochpotent, aber nur für umschriebene, eng begrenzte Fragestellungen einsetzbar und hat mit wirklicher, d. h. aktiver Intelligenz nichts zu tun.


Dies ist Teil 3 aus dem Nachwort des Buches ‹Wie die künstliche Intelligenz zur Intelligenz kommt›.  –> zum Buch

Drei Beobachtungen zur Künstlichen Intelligenz / 2

Die Möglichkeiten der neuronalen Netze sind beschränkt

Der unbezweifelbare Erfolg der neuronalen Netze lässt ihre Schwächen in den Hintergrund treten. Als korpusbasierte Systeme sind neuronale Netze völlig von der vorgängig erfolgten Datensammlung, dem Korpus abhängig. Prinzipiell kann nur die Information, die auch im Korpus steckt,  vom neuronalen Netz überhaupt gesehen werden. Zudem muss der Korpus bewertet werden, was durch menschliche Experten erfolgt.

Was nicht im Korpus steckt, befindet sich ausserhalb des Horizonts des neuronalen Netzes. Fehler im Korpus oder in seiner Bewertung führen zu Fehlern im neuronalen Netz:

Intransparenz

Welche Datensätze im Korpus zu welchen Schlüssen im neuronalen Netz führen, lässt sich im Nachhinein nicht rekonstruieren. Somit können Fehler im neuronalen Netz nur mit beträchtlichem Aufwand korrigiert werden. Andererseits ist es auch nicht nötig, die Schlussfolgerungen wirklich zu verstehen. So kann ein neuronales Netz ein Lächeln auf einem fotografierten Gesicht sehr gut  erkennen, obwohl wir nicht bewusst angeben können, welche Pixelkombinationen nun genau für das Lächeln verantwortlich sind.

Kleiner Differenzierungsgrad

Wie viele Ergebnismöglichkeiten (Outcomes) kann ein neuronales Netz unterscheiden? Jedes mögliche Ergebnis muss in der Lernphase einzeln geschult und abgegrenzt werden. Dafür müssen genügend Fälle im Korpus vorhanden sein. Der Aufwand bezüglich Korpusgrösse steigt dabei nicht proportional, sondern exponentiell. Dies führt dazu, dass Fragen mit wenig Ergebnismöglichkeiten von neuronalen Netzen sehr gut, solche mit vielen unterschiedlichen Antworten nur mit überproportionalem Aufwand gelöst werden können.

Am besten eignen sich deshalb binäre Antworten, z. B. Ist der Twittertext von einer Frau oder einem Mann geschrieben? Zuweisungen mit vielen Outcome-Möglichkeiten hingegen eignen sich schlecht.

(Fortsetzung folgt)


Dies ist Teil 2 aus dem Nachwort des Buches ‹Wie die künstliche Intelligenz zur Intelligenz kommt›.  –> zum Buch


Mehr zum Thema Künstliche Intelligenz

Drei Beobachtungen zur Künstlichen Intelligenz / 1

KI umfasst mehr als nur neuronale Netze

Neuronale Netze sind potent

Was unter Künstlicher Intelligenz (KI) allgemein verstanden wird, sind sogenannte Neuronale Netze.

Neuronale Netze sind potent und für ihre Anwendungsgebiete unschlagbar. Sie erweitern die technischen Möglichkeiten unserer Zivilisation massgeblich auf vielen Gebieten. Trotzdem sind neuronale Netze nur eine Möglichkeit, ‹intelligente› Computerprogramme zu organisieren.

Korpus- oder regelbasiert?

Neuronale Netze sind korpusbasiert, d. h. ihre Technik basiert auf einer Datensammlung, dem Korpus, der von aussen in einer Lernphase Datum für Datum bewertet wird. Das Programm erkennt anschliessend in der Bewertung der Daten selbständig gewisse Muster, die auch für bisher unbekannte Fälle gelten. Der Prozess ist automatisch, aber auch intransparent.

In einem realen Einzelfall ist nicht klar, welche Gründe für die Schlussfolgerungen herangezogen worden sind. Wenn der Korpus aber genügend gross und korrekt bewertet ist, ist die Präzision der Schlüsse ausserordentlich hoch.

Grundsätzlich anders funktionieren regelbasierte Systeme. Sie brauchen keine Datensammlung, sondern eine Regelsammlung. Die Regeln werden von Menschen erstellt und sind transparent, d. h. leicht les- und veränderbar. Regelbasierte Systeme funktionieren allerdings nur mit einer adäquaten Logik (dynamische, nicht statische Logik) und einer für komplexe Semantiken geeigneten, multifokalen Begriffsarchitektur; beides wird in den entsprechenden Hochschulinstituten bisher kaum gelehrt.
Aus diesem Grund stehen regelbasierte Systeme heute eher im Hintergrund, und was allgemein unter künstlicher Intelligenz verstanden wird, sind neuronale Netze, also korpusbasierte Systeme.

(Fortsetzung)


Dies ist Teil 1 aus dem Nachwort des Buches ‹Wie die künstliche Intelligenz zur Intelligenz kommt›.  –> zum Buch


Mehr zum Thema Künstliche Intelligenz

Mentale Welt

Was ist die mentale Welt?

Die mentale Welt ist die Welt in unserem Kopf. Es ist die Weise, wie wir die Welt wahrnehmen, sie umfasst unsere Empfindungen, Gefühle und Gedanken. Es ist eine ganz subjektive Welt.

In der Drei-Welten-Theorie ist die mentale Welt die dritte neben der physikalischen und die platonischen.

Unterschied zur physikalischen Welt

Während die physikalische Welt objektiv fassbar ist, bleibt die mentale subjektiv.

Mit anderen Worten: Während wir die Gegenstände der physikalischen Welt von aussen beobachten können, ist dies mit den Gegenständen der mentalen Welt nicht möglich.

Beispiel Farbe

Objektiv (physikalisch) sind die Farben messbar als Wellenlängen von Lichtwellen. So hat z.B. gelb oder blau eine bestimmte Wellenlänge, die in Nanometern objektiv messbar ist. Was wir wahrnehmen ist allerdings nicht die Wellenlänge. Wir haben einen subjektiven Eindruck von Gelb oder Blau, der zwar durch das physikalische Phänomen der Lichtwelle ausgelöst wird, doch was wir empfinden ist nicht die Wellenlänge, sondern ein ganz subjektiver Eindruck von gelber oder grüner Farbe. So nehmen wir z.B. grün als eine bestimmte Farbe wahr, die einem bestimmten Wellenlänge entspricht. Wie wir aus dem Zeichnungsunterricht wissen, kann das Grün aber aus blau und gelb gemischt werden. Das heisst, was auf unser Auge physikalisch eintrifft, ist eine Kombination von Photonen mit ‹blauer› und ‹gelber› Wellenlänge. Wir nehmen aber nicht diese beiden objektiv vorhandenen Wellenlängen wahr, sondern wir eimpfinden die Kombination als Grün, also als eine ganz andere Wellenlänge. Dieser subjektive Eindruck wird in der Literatur ‹Qualia‹ genannt.


Existiert die mentale Welt wirklich?

Oder ist sie einfach eine Auswirkung (Emanation) der physikalischen Welt? Viele Leute glauben dies. Der subjektive Eindruck, den wir empfinden, wird im Gehirn durch die elektrische Ströme erzeugt, die die Photonen auf unserer Netzhaut auslösen. In diesem Sinn existiert die mentale Welt nicht wirklich, sondern ist eine Emanation der physikalischen Welt, eine blosse Auswirkung der Physik, die uns die Farbempfindung vortäuscht.

Am anderen Ende des Spektrums stehen die Solipsisten und die radikalen Konstruktivisten wie Ernst von Glasersfeld. Für Solipsisten ist die mentale Welt – also ihre eigene Vorstellung – die einzige Welt, die sicher existiert. Alles andere kann eine Täuschung sein, ein Traum, nur die eigene Vorstellung ist sicher.

Wir haben also zwei Extreme

a) Physikalisten: Nur die physikalische Welt e xistiert, die mentale Welt wird völlig durch die physikalische konstruiert.

b) Solipsisten: Nur die mentale Welt existiert, sie täuscht uns die Existenz einer physikalischen Aussenwelt vor.

Interessanter als diese beiden Extreme sind die Meinungen dazwischen. Roger Penrose z.B. plädiert mit seiner Drei-Welten-Theorie dafür, keine der drei Welten als nicht-existierend auszuschliessen. Es geht ihm vielmehr darum, die Beziehungen der drei Welten zu klären.

Koexistenz

Dies ist auch meine Haltung: Obwohl es plausibel erscheint, die mentalen Empfindungen und Vorgänge als reine Auswirkungen der physikalsichen Welt zu sehen, erscheint es mir sinnvoll, die mentale Welt als eigene Welt anzusehen. Nicht weil sie nicht aus der physikalischen emaniert sein könnte, sondern weil sie auf diese Weise besser beschrieben werden kann. Um auf das Beispiel der Farben zurückzukommen: Es ist für das menschliche Verhalten irrelevant, ob grün mit seiner korrekten eigenen Wellenlänge oder mit einer Kombination von gelben und blauen Wellenlängen erzeugt wird, ich sehe immer die gleiche Farbe und verhalte mich auch entsprechend. Die Beschreibung des menschlichen Denkens, Empfindens und Verhaltens wird einfacher und gleichzeitig präziser, wenn wir die Vorgänge in der mentalen Welt direkt angehen. Dies ist möglich, aber nur von innen, wenn ich mir die Gedanken, Farben etc. der mentalen Welt selber vorstelle.

Auch eine Kommunikation über mentale Gegenstände (Gedanken, Farben etc.) ist möglich, setzt aber ebenfalls eine subjektiven Erfahrungsgrundlage voraus, diesmal eine, welche die Kommunikationsteilnehmer auf ähnliche Weise erlebt haben.


Wo spielt die mentale Welt eine Rolle?

Überall, wo es im innere Wahrnehmungen und Vorgänge geht, sind wir in der mentalen Welt.

Folgende Gebiete lassen sich kaum beschreiben, ohne die Existenz der mentalen Welt zu akzeptieren:

  • Psychologie
  • Kultur
  • Werte, Moral
  • Politik
  • Kunst

Die mentale Welt ist somit nicht ganz irrelevant.

Semantik

In meinem eigenen Gebiet, der Semantik, ist eine klare Trennlinie zwischen der objektiven und der subjektiven Welt erkennbar. Während Wörter und Sätze Teil der objektiven Welt sind, sind die Begriffe, also die Bedeutungen der Wörter, und die Gedanken, die mit den Sätzen ausgedrückt werden, Teil der subjektiven, d.h. der mentalen Welt.


Dies ist ein Beitrag zur Drei-Welten-Theorie.