Schlagwort-Archive: mathematische Logik

Paradoxe Logikkerne (Teil 1)


Logik in Praxis und Theorie

Computerprogramme bestehen aus Algorithmen, d.h. aus Anweisungen, wie und in welcher Reihenfolge eine Eingabe zu bearbeiten ist. Algorithmen sind nichts anderes als angewandte Logik und ein Programmierer ist ein praktizierender Logiker.

Doch Logik ist ein weiter Begriff. Ganz eng gefasst, ist Logik ein Teil der Mathematik, ganz weit verstanden, ist Logik alles, was mit Denken zu tun hat. Diese beiden Pole zeigen einen deutlichen Kontrast: Die Logik der Mathematik ist geschlossen und wohldefiniert, die Logik des Denkens hingegen entzieht sich gern der präzisen Beobachtung: Wie komme ich auf einen bestimmten Gedanken? Wie verbinde ich meine Gedanken beim Denken? Und überhaupt: Was habe ich eben gedacht? Während die mathematische Logik mit klaren Begriffen und Regeln funktioniert, explizit und objektiv beschreibbar, ist die Logik des Denkens schwerer fassbar. Gibt es überhaupt Regeln des richtigen Denkens, so wie es in der mathematischen Logik Regeln dafür gibt, auf richtige Weise Schlüsse zu ziehen?

Wenn ich in diesen Unterschied zwischen mathematischer Logik und der Logik des Denkens eintauche, dann fällt mir etwas sofort auf: Das Nachdenken über mein Denken entzieht sich der Objektivität. Das ist bei der Mathematik nicht so. Mathematiker versuchen jeden kleinsten Denkschritt abzusichern, auf eine Weise, die klar und objektiv und für jeden nachvollziehbar, sobald er die mathematische Sprache versteht, ganz unabhängig von seiner Person: Das Subjekt des Mathematiker bleibt draussen.

Ganz anders ist es beim Denken. Wenn ich versuche, einen Gedanken zu beschreiben, den ich im Kopf habe, ist das mein persönlicher Gedanken, ein subjektives Geschehen, das sich primär nur meinem eigenen Denken zeigt und durch Wörter oder mathematische Formeln nur beschränkt ausgedrückt werden kann.

Doch genau dieser Widerstand reizt mich. Schliesslich möchte ich ‹korrekt› denken, und dazu ist es verlockend, zu verstehen, wie korrektes Denken überhaupt funktioniert.

Ich könnte nun Regress nehmen auf die mathematische Logik. Doch das Gehirn funktioniert nicht auf diese Weise. Auf welche Weise denn? Damit habe ich mich über viele Jahrzehnte beschäftigt, in der Praxis, ganz konkret bei dem Versuch, dem Computer NLP (Natural Language Processing) beizubringen, also explizite, maschinenfassbare Regeln zu finden für das Verstehen von Texten, ein Verstehen, das eigentlich ein subjektiver und zudem schwierig zu beschreibender Vorgang ist.

Meine Computerprogramme waren erfolgreich, doch das wirklich Interessante sind die Erkenntnisse, die ich dabei über das Denken gewinnen konnte, genauer, über die Logik, mit der wir denken.

Bei meiner Arbeit gelangen mir Erkenntnisse über den semantischen Raum, in dem wir denken, die Begriffe, die sich in diesem Raum aufhalten und die Art, wie sie sich bewegen. Doch die wichtigste Erkenntnis betraf die Zeit in der Logik. Darauf möchte ich jetzt eintreten.

Echte Paradoxe

Jeder, der sich ernsthaft mit Logik beschäftigt, ob professionell oder aus persönlichem Interesse, stösst früher oder später auf Paradoxe. Ein klassisches Paradox ist z.B. das Barbier-Paradox:

Das Barbierparadox

Der Barbier eines Dorfes wird dadurch definiert, dass er alle Männer rasiert, die sich nicht selber rasieren. Rasiert der Barbier sich selber? Wenn er das tut, gehört er zu den Männern, die sich selber rasieren und die er deshalb nicht rasiert. Wenn er sich somit nicht selber rasiert, gehört er aber zu den Männern, die er rasiert, also rasiert er auch sich selber. Dadurch gehört er aber zu den Männern, die er nicht rasieren muss. Also rasiert er sich nicht – usw. Das ist das Paradox: Wenn er sich rasiert, rasiert er sich nicht. Wenn er sich nicht rasiert, rasiert er sich.

Das gleiche Muster findet sich in weiteren Paradoxien, wie dem Lügnerparadox und vielen anderen. Man könnte nun denken, dass diese Art Paradoxien sehr gesucht sind und real keine Rolle spielen. Doch die Paradoxien spielen schon eine Rolle, zumindest an zwei Orten: in der Mathematik und im Denkvorgang.

Das Russel’sche Paradox und die Unvollständigkeitssätze von Kurt Gödel

Das Russel’sche Paradox hat das ‹Loch› in der Mengenlehre gezeigt. Die «Menge aller Mengen, die sich nicht selbst als Element enthalten» folgt dem gleichen Muster wie der Barbier des Barbierparadoxes und führt zur gleichen Art von unlösbarem Paradox. Etwas komplexer sind die beiden Unvollständigkeitssätze von Kurt Gödel, die aber letztlich auf dem gleichen Muster beruhen. Sowohl Russels wie Gödels Paradoxien sind für die Mathematik folgenreich. Das Russel Paradox hat dazu geführt, dass die Mengenlehre nicht mehr allein mit Mengen gebildet werden kann, weil das zu unhaltbaren Widersprüchen führt. Zermelo hatte deshalb die Mengen mit Klassen ergänzt und so die Geschlossenheit der Mengenlehre aufgeben müssen.

Auch Gödels Unvollständigkeitssätze beruhen letztlich auf dem gleichen Muster wie das Barbierparadox. Gödel hatte gezeigt, dass jedes formale System (formal im Sinn der Mathematik) Aussagen enthalten muss, die man formal weder beweisen noch widerlegen kann. Ein harter Schlag für die Mathematik und ihre formale Logik.

Spencer-Brown und die «Laws of Form»

Russels Widerlegung des simplen Mengenbegriffs und Gödels Beweis der Unvollständigkeit formaler Logik legen es nahe, näher über Paradoxe nachzudenken. Was ist das genau für ein logisches Muster, das hinter Russels und Gödels Problemen steckt? Was macht die Mengenlehre und die formale Logik unvollständig?

Die Frage hat mich lange beschäftigt. Überraschend hat es sich dann gezeigt, dass Paradoxien nicht nur lästige Übel sind, sondern dass es sich lohnt, sie vielmehr als sinnvolle Elemente in einer neuen formalen Logik einzusetzen. Dieser Schritt wurde vom Mathematiker Georg Spencer-Brown in seinem Buch «Laws of Form» von 1969 aufgezeigt, samt einem maximal einfachen Formalismus für Logik.

Ich möchte nun näher auf die Struktur der Paradoxien eintreten, wie sie Spencer-Browns aufgezeigt hat und auf die Konsequenzen, die sich daraus auf die Logik, die Physik, die Biologie und vieles mehr ergeben.

Fortsetzung: Paradoxe Logikkerne (Teil 2)


IF-THEN / statisch oder dynamisch?

Zwei Typen von IF-THEN

Viele glauben, dass das IF-THEN in der Logik eine klare Sache sei. Meiner Ansicht nach wird dabei aber oft übersehen, dass es vom IF-THEN zwei verschiedene Typen gibt. Der Unterschied zwischen den beiden besteht darin, ob das IF-THEN eine interne zeitliche Komponente besitzt oder nicht.

Dynamisches (reales) IF-THEN

Für viele von uns ist das IF-THEN dynamisch, d.h. es besitzt eine spürbare zeitliche Komponente. Bevor wir zum Schluss, d.h. zum THEN gelangen, schauen wir das IF genau an, d.h. die Bedingung, die anschliessend den Schluss erlaubt. Mit anderen Worten: Die Bedingung wird ZUERST angesehen, DANN kommt der Schluss

Das ist nicht nur im menschlichen Denken, sondern auch bei Computerprogrammen so. Computer erlauben die Kontrolle von ausgedehnten und komplexen Bedingungen (IFs). Diese müssen durch den Prozessor des Rechners im Memory abgelesen werden. Vielleicht müssen noch kleinere Berechnungen durchgeführt werden, die in den IF-Statements enthalten sind, und die Resultate der Berechnungen müssen dann mit den verlangten IF-Bedingungen verglichen werden. Natürlich brauchen die Abfragen Zeit. Auch wenn der Computer sehr schnell ist, und die Zeit, die für die Kontrolle des IFs benötigt wird, minimal ist, ist sie trotzdem messbar. Erst NACH der Kontrolle, kann der in der Computersprache formulierte Schluss, das THEN, ausgeführt werden.

Im menschlichen Denken, wie auch bei der Ausführung eines Computerprogramms, sind also das IF und das THEN zeitlich eindeutig getrennt. Das wird Sie nicht erstaunen, denn beides, der Ablauf des Computerprogramms wie das menschliche Denken sind reale Vorgänge, sie laufen in der realen, physischen Welt ab, und in dieser benötigen alle Prozesse Zeit.

Statisches (ideales) IF-THEN

Etwas mehr erstaunen wird Sie vielleicht, dass in der klassischen mathematischen Logik, das IF-THEN keine Zeit braucht. Das IF und das THEN bestehen simultan. Wenn das IF wahr ist, ist automatisch und sofort das THEN wahr. Eigentlich ist es sogar falsch, von vorher und nachher zu sprechen, da Aussagen in der klassischen mathematischen Logik immer ausserhalb der Zeit stehen. Wenn eine Aussage wahr ist, ist sie immer wahr, wenn sie falsch ist, ist sie immer falsch (=Monotonie, siehe vorhergehende Beiträge).

Das mathematische IF-THEN wird oft mit Venn-Diagrammen (Mengen-Diagrammen) erläutert. In diesen Visualisierungen ist das IF z.B. durch eine Menge repräsentiert, die eine Teilmenge der Menge des THEN ist. Es handelt sich für die Mathematiker beim IF-THEN um eine Relation, die vollständig aus der Mengenlehre abgeleitet werden kann. Dabei geht es um (unveränderbare) Zustände von Wahr oder Falsch, und nicht um Prozesse, wie beim Denken in einem menschlichen Hirn oder beim Ablauf eines Computerprogramms.

Wir können also unterscheiden
  • Statisches IF-THEN:
    In Idealsituationen, d.h. in der Mathematik und in der klassischen mathematischen Logik.
  • Dynamisches IF-THEN:
    In Realsituation, d.h. in real ablaufenden Computerprogrammen und im menschlichen Hirn.
Dynamische Logik verwendet das dynamische IF-THEN

Wenn wir eine Logik suchen, die der menschlichen Denksituation entspricht, dann dürfen wir uns nicht auf das ideale, d.h. das statische IF-THEN beschränken. Das dynamische IF-THEN entspricht dem normalen Denkvorgang besser. Die dynamische Logik, für die ich plädiere, respektiert die Zeit und braucht das natürliche, d.h. das dynamische, das reale IF-THEN.

Wenn Zeit eine Rolle spielt, und nach dem ersten Schluss die Welt anders aussehen kann als vorher, kommt es darauf an, welcher Schluss zuerst gezogen wird. Man kann nicht beide gleichzeitig ziehen – ausser man lässt zwei gleichzeitig ablaufende Prozesse zu. Die beiden parallel laufenden Prozesse können sich aber gegenseitig beeinflussen, was die Sache natürlich auch nicht einfacher macht. Die dynamische Logik ist aus diesem und vielen anderen Gründen wesentlich komplexer als die statische. Umso nötiger brauchen wir, um die Sache in den Griff zu bekommen, einen klaren Formalismus.

Statisches und dynamisches IF-THEN nebeneinander

Die beiden Arten des IF-THENs widersprechen sich nicht, sondern ergänzen sich und können durchaus koexistieren. So beschreibt das klassische, statische IF-THEN logische Zustände, die in sich geschlossen sind, und das dynamische beschreibt logische Vorgänge, die von einem logischen Zustand zum anderen führen.

Dieses Zusammenspiel von Statik und Dynamik ist vergleichbar mit dem Zusammenspiel von Statik und Dynamik in der Physik, z.B. mit der Statik und Dynamik in der Mechanik oder der Elektrostatik und der Elektrodynamik in der Elektrizitätslehre. Auch dort beschreibt der jeweils statische Teil die Zustände (ohne Zeit) und der dynamische die Änderung der Zustände (mit Zeit).


Dies ist ein Beitrag zur dynamischen Logik. Er wird fortgesetzt mit der Frage, was passiert, wenn zwei dynamische IF-THENs miteinander konkurrieren.


Erst eine dynamische Logik erlaubt es, Denk- und Informationsprozesse in einen realen Rahmen zu sehen. Mehr zum Thema Logik -> Übersichtsseite Logik