Können wir mit den bisher postulierten Kriterien bereits Tonleitern konstruieren, die so attraktiv sind, dass sie real vorkommen? Die Kriterien sehen ja auf den ersten Blick eher künstlich und theoretisch aus – können Sie trotzdem dazu dienen, natürlich gewachsene Tonleitern zu erklären?
In der Tat können sie das. Die mathematischen Kriterien für Resonanz haben offensichtlich in den Ohren der Menschen gewirkt und sie über die Jahrtausende immer wieder Musik erfinden lassen, die als Basisgerüst genau die Tonleitern haben, die wir gleich mit unseren Kriterien mathematisch ableiten können.
Pool von resonanten Tönen
Nur mit unseren Resonanzkriterien haben wir einen ersten Pool konstruiert, der diejenigen Töne enthält, bei denen wir die stärkste Resonanz mit dem Grundton erwarten. Ich zähle diese neun potentiellen Tonleitertöne hier nochmals auf:
Grundton 1/1 = 1
Grosse Sekund 9/8 = 1.125
Kleine Terz 6/5 = 1.2
Grosse Terz 5/4 = 1.25
Quart 4/3 = 1.333
Quint 3/2 = 1.5
Kleine Sext 8/5 = 1. 6
Grosse Sext 5/3 = 1.666
Kleine Sept 9/5 = 1.8
Grosse Sept 15/8 = 1.875
Oktave 2/1 = 2
Natürlich ist dies nur ein Pool von vielen Tönen und keine sinnvolle Tonleiter. Das Problem ist, dass alle diese Töne zwar einfach und schnell mit dem Grundton in Resonanz eintreten können – doch sind sie auch unter sich resonant?
Zwei Tonleitertöne und Grundton
Es geht also nicht nur um die Resonanz eines Tons mit dem Grundton, sondern zusätzlich um die Resonanz mit weiteren Tönen. Dazu gibt es eine mathematische Grundlage: Wir schauen uns das kgV (kleinstes gemeinsames Vielfaches) der beteiligten Nenner an. Wie das geht, und warum das so ist, ist auf der Seite der Rechengrundlagen für die Resonanzen erklärt.
Das kgV (kleinstes gemeinsames Vielfaches) der Nenner
Die Resonanzkriterien sprechen für eine gute Resonanz, wenn das kgV der beteiligten Nenner möglichst klein ist. Der Grundton hat den Nenner 1, deshalb passt er in jedes kgV, er wird also in jede Kombination gut hinein passen. Wie passen nun die Tonleitertöne zusammen?
Beispiel 1
Quart und Quint: Die Nenner sind 3 und 2, das kgV ist 6, also tief. Auch die Zähler sind tief. Als weiteres Indiz für die Resonanz können wir den Abstand zwischen den beiden Tönen berechnen. Der ist 3/2 : 4/3 = 9/8, also eine grosse Sekunde. 8 ist zwar ein relativ grosser Nenner, was die Resonanz mit anderen Tonleitertönen evtl. stört, doch zur sehr wichtigen Oktave passt sowohl die 8 der Sekunde, wie auch die 2 der Quint sehr gut. Zudem haben beide Töne, Quart und Quint unschlagbar kleine Zähler und Nenner, was sich auf die Mischverhältnisse für weitere Tonleitertöne günstig auswirkt.
Mit anderen Worte: Quart und Quint sind ein perfektes Paar für Resonanz. Mathematisch jedenfalls. Klingt das aber auch gut?
Wie klingt die Kombination subjektiv in unserer Wahrnehmung?
Es geht selbstverständlich nicht nur um Mathematik. Die mentale Welt, unsere subjektive Wahrnehmung entscheidet, ob wir eine bestimme Musik mögen und wie wir sie aufnehmen. Wenn Sie den Grundton mit Quart, Quint und Oktave klingen lassen, können Sie hören, was wir berechnet haben, die Resonanz der vier Töne ist ungetrübt. Die Kombination wirkt sogar eher etwas banal und wir vermissen vielleicht den Pfeffer, den in die Musik, die wir gewohnt sind, die Dissonanzen bringen. Ebenfalls fehlt uns die Süsse der Terzen (Nenner 5 und 6).
Beispiel 2
Wir kombinieren rechnerisch die grosse Sekunde mit der kleinen Terz, also 9/8 mit 6/5: Das kgV ist 40, das Intervall zwischen den beiden Tönen ist 6/5 : 9/8 = 48/45 = 16/15. Mit dem grossen kgV und dem engen Abstand ist dieses Paar in Tonleitern etwas heikler – jedenfalls solange wir das Augenmerk auf eine gute Resonanz legen und alle Schärfen in der Musik vermeiden wollen.
Die gefundenen ersten zwei Tonleitern
Wenn Sie nun Lust haben, können sie selber das kgV und den Abstand zwischen allen oben genannten Tonleitertöne ausrechnen und so einen Pool von Tönen zusammenzustellen, bei dem beides optimiert ist und zwischen allen Tönen möglichst viel Resonanz entstehen kann. Natürlich wollen Sie für die Tonleiter auch mehr Töne als nur gerade drei oder vier auswählen. Wie wär es mit fünf?
Die beiden Tonleitern mit den stärksten Resonanzen, die sich so finden lassen, sind bemerkenswert – es sind nämlich beides sehr bekannte Tonleitern:
1 – 9/8 – 5/4 – 3/2 – 5/3 – 2
1 – 6/5 – 4/3 – 3/2 – 9/5 – 2
Oder mit dem Grundton C:
C – D – E – G – A – C
C – Es – F – G – Bb – C
Pentatoniken
Es handelt sich um zwei Pentatoniken, also um zwei Tonleitern mit fünf Tönen (Das C kommt doppelt, zählt aber nur einmal). Nicht ganz überraschend ist, dass die beiden Tonleitern gute alte Bekannte sind – es handelt sich um nichts anderes als die Dur- und die Mollpentatonik.
Und auch nicht ganz überraschend: Diese beiden Tonleitern kommen global in praktisch allen Kulturen vor, im Regenwald wie in allen Hochkulturen, entweder in Reinform oder dann als das Basisgerüst von anspruchsvolleren Tonleitern.
Theoretische mathematische Überlegungen haben uns dazu geführt, diese beiden Tonleitern zu postulieren, die nicht nur weltweit bekannt, sondern für alle Menschen, kleine Kinder inklusive, schnell verständlich und sehr eingängig sind.
Das ist m.E. kein Zufall. Es sieht so aus, als ob die bisherigen Überlegungen gut mit der beobachteten Realität kompatibel seien.
In der Fortsetzung finden Sie eine Resonanz-Analyse der fünf Standardpentatoniken.
Die ist ein Beitrag zur Entstehung der Tonleitern.