Menupunkt: Künstliche Intelligenz


Ist KI gefährlich oder nützlich?

Diese Frage wird aktuell ausgiebig diskutiert. Es soll hier nicht darum gehen, wohlbekannte Meinungen zu wiederholen, sondern darum, Grundlagen der Technologie zu nennen, die Ihnen bisher ziemlich sicher unbekannt sind. Oder wissen Sie, woher die KI ihre Intelligenz hat?

Ich arbeite seit einem Vierteljahrhundert mit «intelligenten» Informatiksystemen und wundere mich vor allem darüber, dass wir der künstliche Intelligenz überhaupt eine eigenständige Intelligenz zubilligen. Genau die hat sie nämlich nicht. Ihre Intelligenz kommt stets von Menschen, welche die Daten nicht nur liefern, sondern sie auch bewerten müssen, bevor die KI sie verwenden kann. Trotzdem überrascht die KI mit einer immensen Leistungsfähigkeit und sinnvollen Anwendungen in den unterschiedlichsten Gebieten. Wie macht sie das?

2019 habe ich hier eine Blogserie zum Thema begonnen, zu der Sie unten eine Übersicht sehen. 2021 habe ich dann die Beiträge in einem Buch zusammengefasst, mit dem Titel Wie die künstliche Intelligenz zur Intelligenz kommt›


Hier folgen die Blogbeiträge:

Regelbasiert oder korpusbasiert?

Die Computerintelligenz verfügt über zwei grundlegend verschiedene Methoden: Sie kann entweder auf Regeln oder auf einer Datensammlung (=Korpus) beruhen. Im Einstiegsbeitrag stelle ich sie mit zwei charakteristischen Anekdoten vor:


Bezüglich Erfolg haben die korpusbasierten Systeme die regelbasierten offensichtlich überflügelt:


Die regelbasierten Systeme hatten es schwieriger. Was sind ihre Herausforderungen? Wie können sie ihre Schwächen überwinden? Und wo steckt bei ihnen die Intelligenz?


Zurück zu den korpusbasierten Systemen. Wie sind sie aufgebaut? Wie wird ihr Korpus zusammengestellt und bewertet? Was hat es mit dem neuronalen Netz auf sich? Und was sind die natürlichen Grenzen der korpusbasierten Systeme?


Als nächstes beschäftigen wir uns mit Suchmaschinen, die ebenfalls korpusbasierte Systeme sind. Wie gelangen sie zu ihren Vorschlägen? Wo sind ihre Grenzen und Gefahren? Weshalb entstehen z.B. zwingend Blasen?


Kann ein Programm lernen, ohne dass ein Mensch ihm gute Ratschläge zuflüstert? Mit Deep Learning scheint das zu klappen. Um zu verstehen, was dabei passiert, vergleichen wir zuerst ein einfaches Kartenspiel mit Schach: Was braucht mehr Intelligenz? Überraschend wird klar, dass für den Computer Schach das einfachere Spiel ist.

An den Rahmenbedingungen von Go und Schach erkennen wir, unter welchen Voraussetzungen Deep Learning funktioniert.


Im anschliessenden Beitrag gebe ich einen systematischen Überblick über die mir bekannten KI-Arten, skizziere kurz ihren jeweiligen Aufbau und die Unterschiede in ihrer Funktionsweise.

Wo steckt nun die Intelligenz?


Die angestellten Überlegungen lassen erkennen, was die natürliche Intelligenz gegenüber der künstlichen auszeichnet:


Ihre Leistungsfähigkeit zeigt die KI nur, wenn die Aufgabenstellung klar und einfach ist. Sobald die Fragestellung komplex wird, versagen sie. Oder sie flunkern, indem sie schöne Sätze, die sich in ihrem Datenschatz finden, so anordnen, dass es intelligent klingt (ChatGPT, LaMDA). Sie arbeiten nicht mit Logik, sondern mit Statistik, also mit Wahrscheinlichkeit. Aber ist das Wahr-Scheinliche auch immer das Wahre?

Die Schwächen folgen zwingend aus dem Konstruktionsprinzip der KI. Damit befassen sich weitere Beiträge:


 

Schreiben Sie einen Kommentar

Ihre E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert