Die zwei auseinanderstrebenden Ideale einer Theorie
Musiktheorie bewegt sich wie jede Theorie zwischen zwei Extremen. Einerseits erlaubt es eine Theorie, ganz verschiedene Beobachtungen zusammenzufassen und auf einfache Art zu erklären – je einfacher umso besser. Andererseits wollen wir die Erklärung aber auch anwenden, und zwar auf möglichst alles, was wir beobachten. Eine Theorie ist also dann gut, wenn sie möglichst einfach ist, andererseits aber auch möglichst alles erklärt.
Diese beiden Extremziele jeder guten Theorie gleichzeitig zu erfüllen ist die Herausforderung.
Typisch ist der Moment, wo bei der Anwendung der Theorie plötzlich eine Beobachtung auftaucht, die mit der Theorie nicht vereinbar ist. Solche Beobachtungen stürzen die Theorie in eine Krise, z.B. als Max Planck unerklärliche Unregelmässigkeiten in der Schwarzkörperstrahlung feststellte und so die Quantentheorie einleitete oder als Kurt Gödel mit der Beobachtung einer Lücke in der Logik der Mengen (Unvollständigkeitssatz 1931) sowohl die Mengenlehre als auch die klassische Logik in eine schwere Krise stürzte.
Jede Theorie funktioniert solange gut, bis sie an ihre Grenzen kommt. Dann tauchen plötzlich Lücken auf.
Stimmt die reine Stimmung überhaupt?
Nun, die Krise, von der ich hier spreche, ist etwas älter als die von Max Planck und Kurt Gödel ausgelösten. Sie hat auch schon lange eine sehr praktische Lösung gefunden. Es handelte sich um eine Krise in der Musiktheorie, und die gefundene Lösung ist die gleichstufig temperierte Stimmung. Dies ist die Art, wie wir heute Musikinstrumente stimmen, aber es ist keine Selbstverständlichkeit.
Wie kam es dazu? Schon lange war bekannt, dass mathematische Gesetzmässigkeiten hinter den Intervallen stecken, die wir als wohlklingend empfinden. Tonleitern mit diesen durch einfache Brüche definierten Intervallen gelten als rein, auch unser Dur (ionisch) und alle anderen Kirchentonarten sind perfekt rein, sofern die Intervalle entsprechend den einfachen Brüchen gestimmt werden. Dann sind sie «rein».
Das funktioniert aber nur, wenn man in der gleichen Tonalität bleibt, d.h. wenn die Musik nicht den Grundton wechselt, d.h. nicht moduliert. In der Renaissance aber kamen die Komponisten zunehmend in Aufbruchstimmung und begannen zu modulieren, indem sie den Grundton (die Tonalität), innerhalb des gleichen Musikstücks wechselten. Dabei wurden die Grenzen der reinen (=pythagoräischen) Stimmung evident.
Die Lücke im pythagoreischen Tonsystem
Als ich das erste Mal vom pythagoreischen Komma hörte, war ich sehr überrascht. Unser perfektes Tonsystem sollte eine – wenn auch klitzekleine – Lücke in der mathematisch perfekten Anordnung haben? Das Tonsystem besteht – wie jeder Blick auf eine Klaviertastatur zeigt – aus zwölf Halbtönen. Wenn ich die Halbtöne einen nach dem anderen nach oben gehe, kommt nach sieben Halbtönen die Quint und nach zwölf die Oktave. Wenn ich also zwölf Quinten (=12×7 Halbtöne) hochgehe, bin ich mathematisch gesehen am gleichen Ort, wie wenn ich sieben Oktaven (=7×12) hochgehe, nicht wahr?
Soweit die Mathematik, die mir als Kind sehr eingeleuchtet hat und ich war erstaunt, dass es nicht so sein sollte. In Wirklichkeit kommt man nach zwölf Quinten nämlich zu einem etwas höheren Ton als nach sieben Oktaven. 12×7 ist in diesem Fall nicht 7×12. Dieser Unterschied ist das pythagoreische Komma.
Woher kommt es? Die Ursache liegt – wie so oft – in einem unerwarteten exponentiellen Wachstum. Im Beitrag zum pythagoreischen Komma erkläre ich, wie und weshalb diese Lücke im pythagoreischen Tonsystem entsteht
Die ist ein Beitrag zur Entstehung der Tonleitern.