Schlagwort-Archive: Abstraktion

Das Bit hat keine Bedeutung

Das Bit ist die Basis der IT

Unsere Informationstechnologie baut auf dem Bit auf. Alles, was in unseren Computern geschieht, basiert auf diesem kleinsten Basiselement der Information. Wenn Sie gefragt werden, was ein einzelnes Bit bedeutet, werden Sie möglicherweise antworten, dass das Bit zwei Zustände einnehmen kann, von denen der eine 0 ist und der andere 1 bedeutet. Auf diese Weise können wir bekanntlich beliebig hohe Zahlen schreiben, wir müssen einfach genügend Bits hintereinander reihen.

Aber stimmt das auch? Bedeutet wirklich der eine Zustand im Bit 0 und der andere 1? Können die beiden Zustände nicht auch ganz andere Bedeutungen annehmen?

Dem Bit können beliebige Bedeutungen zugeschrieben werden

In der Tat können die beiden Zustände des Bits irgendeine Bedeutung einnehmen. Beliebt sind neben 0/1 auch Wahr/Falsch, Ja/Nein, Positiv/Negativ, aber im Prinzip und in der Praxis können dem Bit von aussen irgendwelche Bedeutungen zugeschrieben werden. Selbstverständlich sind auch Umkehrungen erlaubt, also neben 0/1 auch 1/0.

Die Zuschreibung der Bedeutung des Bits erfolgt von aussen

Ob das konkrete Bit im Computerprogramm nun 0/1 oder 1/0 oder irgendetwas anderes bedeutet, spielt selbstverständlich eine entscheidende Rolle. Die Bedeutung liegt aber nicht im Bit selber, denn das Bit ist eine höchst radikale Abstraktion. Es sagt nur aus, dass zwei Zustände existieren und welcher zur Laufzeit gerade aktuell ist. Was die beiden aber bedeuten, ist eine ganz andere Geschichte, die über das einzelne Bit weit hinausgeht. In einem Computerprogramm kann z.B. deklariert werden, dass das Bit dem Wertepaar TRUE/FALSE entspricht. Das gleiche Bit kann aber auch mit anderen Bits zusammen als Teil einer Zahl oder eines Buchstabencodes interpretiert werden – sehr unterschiedliche Bedeutungen also, je nach Programmkontext.

Digitaler und analoger Kontext

Das Softwareprogramm ist der digitale Kontext und er besteht selbstverständlich aus weiteren Bits. Diese Bits aus der Umgebung können verwendet werden, um die Bedeutung eines Bits zu bestimmen. Nehmen wir an, unser Bit sei mit weiteren Bits daran beteiligt, den Buchstaben ‹f› zu definieren. Unser Programm sei auch so organisiert, dass dieser Buchstabe in eine Tabelle zu stehen kommt, und zwar in eine Spalte, die mit ‹Geschlecht› überschrieben ist. All dies ist in der Software klar geregelt. Legt nun die Software die Bedeutung des Bits fest? Sicher sind Sie nicht überrascht, wenn das ‹f› die Bedeutung ‹feminin› hat und die Tabelle vermutlich verschiedene Personen auflistet, die männlich oder weiblich (f) sein können. Was aber bedeuten männlich und weiblich? Erst in der analogen Welt bekommen diese Ausdrücke eine Bedeutung.

Das Bit, die perfekte Abstraktion

Das Bit stellt in der Tat den Endpunkt einer radikalen Informationsabstraktion dar. Die Information ist im einzelnen Bit soweit auf das absolut Elementare reduziert, dass die Information über die Bedeutung aus dem Bit vollständig herausgenommen worden ist. Das Bit sagt nur noch aus, dass zwei – ausserhalb des Bits beschriebene – Zustände existieren und welcher der beiden zu einem bestimmten Zeitpunkt aktuell ist.

Diese radikale Abstraktion ist gewollt und in einer Software sehr sinnvoll. Denn so kann das gleiche physische Bit im Chip des Computer immer wieder neu verwendet werden, einmal als TRUE/FALSE-Paar, einmal als 0/1, einmal als JA/NEIN usw. Das ist sehr praktisch und ermöglicht dem Computer, beliebige Aufgaben zu erfüllen. Die dadurch gewonnene perfekte Abstraktion nimmt dem einzelnen Bit aber gleichzeitig seine individuelle Bedeutung und diese kann und muss dann für jede Anwendung von aussen neu gegeben werden.

Der unendliche Regress

Wenn die Bedeutung des Bits von aussen gegeben wird, dann können natürlich andere Bits diese Aufgabe übernehmen und die Bedeutung des einen Bits definieren. Dazu müssen aber diese äusseren Bits die entsprechende Wirkkraft haben, die natürlich nicht ohne deren eigenen Bedeutung zu haben ist. Und selbstverständlich liegen die Bedeutungen der Bits dieses äusseren Kreises nicht in diesen Bits selber – aus den gleichen Gründen wie oben – sondern sie müssen von aussen, d.h. von einem weiteren Kreis von Bits gegeben werden. Die Bits dieses zweiten äusseren Kreises müssen in einem weiteren Kreis erklärt werden und die Bedeutung der Bits dieses weiteren Kreises wiederum von einem noch äusseren  …  Selbstverständlich kommt dieser Prozess der Bedeutungszuordnung in einer Welt von Bits nie an sein Ende, der Regress ist unendlich.

Erst im Analogen endet der unendliche Regress

Erst wenn wir aus dem Programm in die Realwelt heraustreten, können wir den Informationen aus dem Computer wirkliche eine Bedeutung zuordnen.

Selektiver und deskriptiver Informationsgehalt

Wenn wir das oben Beschriebene rekapitulieren können wir im Bit Folgendes unterscheiden:

Der deskriptive Informationsgehalt sagt aus, was das Bit bedeutet, er beschreibt die beiden Zustände des Bits, sagt aber nicht aus, welcher Zustand aktuell gewählt ist.  Der selektive Informationsgehalt andererseits sagt aus, welcher der beiden Zustände aktuell ist, weiss aber nichts über die Eigenschaften der beiden Zustände, und somit auch nichts über ihre jeweilige Bedeutung.

Die Unterscheidung zwischen selektivem und deskriptivem Informationsgehalt wurden vom britischen Radar-Pionier und Informationswissenschaftler Donald MacKay in den 40-er Jahren des letzten Jahrhunderts geprägt, praktisch gleichzeitig mit der ersten Erwähnung und Beschreibung des klassischen Bits durch den Amerikaner C. A. Shannon. MacKay hat auch bereits sehr klar erkannt, dass das Bit von Shannon nur einen selektiven Informationsgehalt trägt und der deskriptive von aussen gegeben werden muss.

Erstaunlicherweise ist diese Erkenntnis von MacKay heute beinahe in Vergessenheit geraten.


Fazit:

1. Das Bit liefert den selektiven Informationsgehalt.
2. Der deskriptive Informationsgehalt liegt nicht im Bit.
3. Ein isoliertes Bit trägt allein keine Bedeutung.
4. Die Bedeutung des Bits wird stets von ausserhalb des Bits gegeben.
5. Dadurch wird ein unendlicher Regress initiiert.
6. Erst im Analogen endet der unendliche Regress.


Die Zahl der Bits misst die Quantität von Information -> Übersichtsseite Informationstheorie


Was ist Resonanz?


Die physikalische Basis der Resonanz

Resonanz basiert auf den Eigenschwingungen von physikalischen Medien und ihrer gegenseitigen Koppelung.


Koppelung der Eigenschwingungen von physikalischen Objekten

Die Eigenschwingungen sind stehende Wellen, deren Frequenz von den Eigenschaften des physikalischen Mediums (Grösse, Form, Material, etc. ) bestimmt wird.

Zwei solche Medien können über ihre Eigenschwingung in eine  Resonanz treten. Die Resonanz entsteht durch eine Koppelung der beiden Eigenschwingungen, sodass die beiden physikalischen Medien in ihrem Schwingungsverhalten eine gekoppelte Einheit bilden.

Die Koppelung erfolgt über einen physikalischen Energieaustausch, sei es direkt oder indirekt, z.B. über die Luft. Bedingung für das Entstehen der Koppelung ist, dass die Frequenzen der Eigenschwingungen der beiden beteiligten physikalischen Medien in einem dafür geeigneten mathematischen Verhältnis stehen.

Stabilität der Resonanz über die Zeit

Sobald der Resonanzzustand eingetreten ist, bleibt er eine gewisse Zeitspanne stabil, d.h. der gekoppelte Schwingungszustand bleibt stationär, oft über eine längere Zeit. Dieses erstaunliche Verhalten hat mit den Energieverhältnissen zu tun, die bei der Koppelung besonders energiegünstig sind.


Resonante Eigenschwingungen

Auch die Eigenschwingung eines einzelnen physikalischen Objekts kann als Resonanz bezeichnet werden. So weist z.B. ein Elektron um den Atomkern eine Resonanz mit sich selber auf und kann dadurch nur ganz bestimmte Umlauffrequenzen annehmen, die es ihm erlauben, auf seiner Umlaufbahn mit sich selber resonant zu sein. Das Gleiche gilt für das Schwingungsverhalten einer Saite.


Resonanz als Abstraktion

Das physikalische Material bestimmt zwar die Eigenfrequenz der beteiligten schwingenden Medien, doch der Rest, d.h. das Entstehen der gekoppelten Resonanz, ergibt sich aus dem geeigneten Verhältnis der beiden Frequenzen. Dieses Frequenzverhältnis folgt mathematischen Regeln. Eine verblüffend einfache Mathematik reicht aus, zu erkennen, wie stark die Resonanz zwischen den beiden schwingenden physikalischen Medien sein wird.


Drei Welten, nach Roger Penrose

Die Entstehung der Resonanz zeigt eindrücklich das Zusammenspiel von zwei der drei Welten, die gemäss Nobelpreisträger Roger Penrose unsere Realität bilden, nämlich der physikalischen und der platonischen. Letzerer Begriff bezeichnet die abstrakte Welt der Ideen, zu der die Mathematik gehört. Mit der Verwendung des Begriffs ‹platonisch› für die Welt der Mathematik verweist Sir Roger auf die europäische Kulturgeschichte, hier gehört die Diskussion um die Wirklichkeit und Wirksamkeit von Ideen nicht nur zur Philosophie von Platon, sondern bestimmte auch im Mittelalter als Universaliendisput grosse Teile des philosophischen Diskurses. Die Frage hat seither nichts an Relevanz verloren: Wie real sind Ideen? Warum setzt sich Abstraktes in der materiellen Welt durch? Wie ist das Verhältnis von abstrakter Idee und konkreter, d.h. physikalischer Welt?

Ich dachte vor gut einem Jahr, dass das Entstehen der Resonanz in der Musik ein gutes Beispiel wäre, um das Verhältnis von Physik, Mathematik und der dritten Welt, unserem subjektiven Empfinden zu erkunden. Ich war überrascht, wie verblüffend klar der Bezug der drei Welten hier dargestellt werden kann und wie verblüffend einfach, logisch und weitreichend die Mathematik in den Harmonien unserer Musik ist.


Resonanz in der Musik

In einem Musikstück ändern die entstehenden Resonanzen zwischen den Tönen immer wieder und bieten so einen faszinierenden Farbwechsel. Wir können ihn intuitiv erleben, aber auch rational erklären, eben als ein Spiel der Resonanzen unter den Tönen.

Nur die Obertonreihe?

In der Schule habe ich gelernt, dass die Obertonreihe unsere Tonleitern bestimmt. Doch das ist eine grobe Vereinfachung. Das Phänomen der Resonanz kann unsere Tonleitern viel einfacher und direkter erklären als es die Obertonreihe kann. Die Obertonreihe beschreibt das Schwingungsverhalten nämlich nur innerhalb eines physikalischen Medium – die in der Musik interessierende Resonanz entsteht jedoch immer zwischen mindestens zwei verschiedenen Medien (Tönen). Für die Resonanzüberlegungen von zwei Tönen müssen wir konsequenterweise auch zwei Obertonreihen vergleichen. Erst das Nebeneinanderlegen der beiden Reihen erklärt das Geschehen – ein Fakt, der in den Lehrbüchern meist übergangen wird.

Akkorde bestehen aus drei oder mehr Tönen. Auch hier kann die Resonanzanalyse der drei oder mehr beteiligten Töne die Akkordwirkung verblüffend einfach erklären. Nur müssen diesmal nicht die Frequenzen von zwei, sondern von mehreren Tönen gleichzeitig berücksichtigt werden.

Reine und temperierte Stimmung

In Europa hat sich im Barock die gleichmässig temperierte Stimmung durchgesetzt, welche die kompositorischen Möglichkeiten vielfältig erweitert. Das erste, was der Laie zur Theorie der Tonleitern findet, ist deshalb eine genaue Beschreibung der Abweichungen der temperierten von der reinen Stimmung – doch diese Abweichungen sind für die Entstehung von Resonanzen nur von marginaler Bedeutung. Die reine Stimmung ist keine Bedingung für Resonanz, die hier vorgestellte Mathematik der Resonanz erklärt das Phänomen präzis auch bei temperierter Stimmung.


Dies ist ein Beitrag zur Drei-Welten-Theorie nach Penrose und der Herkunft der Tonleitern.