Die Erstellung des Korpus
In einem Vorbeitrag haben wir gesehen, wie der Korpus – die Basis für das neuronale Netz der KI – erstellt wird. Das neuronale Netz kann den Korpus auf raffinierte Weise interpretieren, aber selbstverständlich kann das neuronale Netz nichts aus dem Korpus herausziehen, was nicht drin steckt.
Wie wird der Korpus erstellt? Ein Fachexperte ordnet Bilder einer bestimmten Klasse, einem bestimmten Typus zu, z.B. ‹fremde Panzer› versus ‹eigene Panzer›. Diese Zuordnungen des Experten sind in Abb. 2 die roten Pfeile, welche z.B. die Panzerbilder bewerten.
Selbstverständlich müssen die durch den menschlichen Experten erfolgten Zuordnungen der einzelnen Bilder zu den Zielkategorien korrekt sein. Doch das reicht nicht. Es bestehen prinzipielle Grenzen für die Auswertbarkeit eines Korpus durch ein noch so raffiniertes neuronales Netz.
Der Zufall regiert im zu kleinen Korpus
Wenn ich nur farbige Bilder der eigenen und schwarzweisse Bilder der fremden Panzer habe (siehe Einstiegsbeitrag zur KI), dann kann sich das System leicht irren und alle farbigen der eigenen und die schwarzweissen der fremden Armee zuordnen. Mit einem genügend grossen Korpus kann dieser Mangel zwar behoben werden, doch zeigt das Beispiel, wie wichtig die richtige Bestückung des Korpus ist. Wenn ein Zufall (farbig/schwarzweiss) entscheidend in den Korpus hineinspielt, wird das System falsche Schlüsse ziehen. Der Zufall spielt dabei eine umso grössere Rolle, je kleiner der Korpus, aber auch je grösser die Anzahl der möglichen ‹Outcomes› (= Anzahl der prinzipiell möglichen Resultate) ist.
Neben diesen relativen Hindernissen gibt es aber auch prinzipielle Grenzen der Auswertbarkeit eines KI-Korpus. Darauf gehen wir jetzt ein.
Raupen- oder Radpanzer?
Was im Korpus nicht drin ist, kann auch nicht herausgeholt werden. Selbstverständlich kann ich mit einem Panzer-Korpus keine Flugzeuge klassifizieren.
Was aber ist, wenn unser Panzersystem herausfinden soll, ob es sich um Raupen- oder um Radpanzer handelt? Im Prinzip können im Korpus ja Bilder von beiden Sorten von Panzern enthalten sein. Wie kann die Panzer-KI aus unserem Beispiel das erkennen?
Die einfache Antwort ist: gar nicht. Im Korpus hat das System zwar viele Bilder von Panzern und weiss bei jedem, ob es ein fremder oder eigener ist. Aber ist es ein Radpanzer oder nicht? Diese Information steckt im Korpus (noch) nicht drin und kann deshalb von der KI nicht herausgezogen werden. Zwar kann ein Mensch jedes einzelne Bild entsprechend beurteilen, so wie er das mit der Eigenschaft ‹fremd/eigen› gemacht hat. Aber dann ist es eine KI-fremde, von aussen zugeführte Intelligenz, die das tut. Das neuronale Netz kann das nicht selber leisten, da es nichts über Raupen oder Räder weiss. Es hat nur gelernt, eigene von fremden Panzern zu unterscheiden. Für jede neue Kategorie muss zuerst die Information in den Korpus gegeben (neue rote Pfeile in Abb. 2) und dann das neuronale Netz für die neuen Fragen geschult werden.
Eine solche Schulung muss zwar nicht zwingend am Panzer-Korpus erfolgen. Das System könnte auch anhand eines Korpus von ganz anderen Fahrzeugen lernen, ob sich diese sich auf Rädern oder Raupen bewegen. Auch wenn sich der Unterschied automatisch auf den Panzerkorpus übertragen lässt, muss doch das externe Räder/Raupen-System vorgängig trainiert werden – und zwar mit Zuordnungen, die wieder ein Mensch gemacht hat.
Selber, ohne vorgegebene Beispiele, findet das KI-System dies nicht heraus.
Fazit
- Aus einem Korpus können nur Schlüsse gezogen werden, die im Korpus angelegt sind.
- Die Kategorie-Zuordnungen (die roten Pfeile in Abb. 2) kommen immer von aussen, d.h. von einem Menschen.
In unserem Beispiel haben wir mit dem Panzerbeispiel eine typische Bilderkennungs-KI untersucht. Aber gelten die daraus gezogenen Schlüsse (siehe Fazit oben) auch für andere korpusbasierte Systeme? Und gibt es nicht so etwas wie ‹Deep Learning›, also die Möglichkeit, dass ein KI-System ganz von selber lernt?
Schauen wir deshalb im nächsten Beitrag einen ganz anderen Typ mit korpusbasierter KI an.
Dies ist ein Beitrag zum Thema künstliche Intelligenz.