Schlagwort-Archive: Lernkorpus

Künstliche und natürliche Intelligenz: Der Unterschied

Was ist wirkliche Intelligenz? 

Paradoxerweise hilft uns der Erfolg der künstlichen Intelligenz, essenzielle Bedingungen für die echte Intelligenz zu erkennen. Wenn wir nämlich akzeptieren, dass die künstliche Intelligenz an Grenzen stösst und im Vergleich zur echten klar erkennbare Mängel aufweist – und genau das haben wir ja in den Vorbeiträgen erkannt und beschrieben –, dann zeigen uns die Beschreibungen nicht nur, was bei der künstlichen Intelligenz fehlt, sondern auch, was die echte Intelligenz der künstlichen voraus hat. Wir lernen also etwas ganz Entscheidendes zum Thema natürliche Intelligenz.

Was haben wir erkannt? Was sind die essentiellen Unterschiede? Meines Erachtens sind es zwei Eigenschaften, durch die sich echte Intelligenz gegenüber künstlicher auszeichnet:

Die echte Intelligenz
– funktioniert auch in offenen Systemen,
– zeichnet sich durch eine bewusste Absicht aus.

Schach und Go sind geschlossene Systeme

Im Beitrag ‹Jassen und Schach› haben wir das Paradox untersucht, dass das Jass-Spiel für uns Menschen weniger Intelligenz zu erfordern scheint als Schach, für künstliche Intelligenz ist es aber genau umgekehrt. Im Schach und GO schlägt uns der Computer, beim Jassen hingegen haben wir durchaus eine Chance.

Weshalb ist das so? – Der Grund liegt in der Geschlossenheit des Schachspiels. Die Geschlossenheit bedeutet, dass nichts geschieht, was nicht vorgesehen ist. Alle Spielregeln sind klar definiert. Die Zahl der Felder und der Figuren, die Anfangspositionen und Spielmöglichkeiten der Figuren, wer wann zieht und wer wann warum gewonnen hat; all dies ist eindeutig festgesetzt. Und alle Regeln sind explizit; was nicht definiert ist, spielt keine Rolle: Wie der König ausschaut? Egal, wichtig ist nur, dass es einen König gibt und dass er für den Sieg matt zu setzen ist, im Notfall reicht, um den König zu symbolisieren, ein Papierfetzchen mit einem ‹K› darauf.

Solche geschlossenen Systeme können mathematisch klar beschrieben werden, und sie sind deterministisch. Natürlich braucht es Intelligenz, um zu siegen, doch diese Intelligenz kann völlig mechanisch sein, eben eine künstliche Intelligenz.

Mustererkennung: Offenes oder geschlossenes System?

Anders sieht es beim Typus Mustererkennung aus, wenn z.B. auf Bildern bestimmte Gegenstände und ihre Eigenschaften erkannt werden müssen. Hier ist das System im Prinzip offen, denn es können nicht nur Bilder mit ganz neuen Eigenschaften von aussen eingebracht werden, sondern auch die entscheidenden Eigenschaften, die erkannt werden müssen, können variieren. Die Situation ist also nicht so einfach, klar definiert und geschlossen wie bei Schach und GO. Ist das nun ein geschlossenes System?

Nein, ist es nicht. Während bei Schach die Spielregeln einen abschliessenden Grenzzaun um die Möglichkeiten und Ziele legen, muss ein solcher Sicherheitszaun aktiv um die Mustererkennung gelegt werden. Der Zweck ist, dabei die Vielfalt der Muster in einer klaren Verteilung zu organisieren. Das können nur Menschen. Sie bewerten den Lernkorpus, der möglichst viele Musterbeispiele erfasst, und jedes Beispiel wird von den Experten entsprechend der gewünschten Unterscheidung zugeordnet. Dieser bewertete Lernkorpus nimmt dann die Rolle der Spielregeln des Schachs ein und er bestimmt, wie ein neuer Input bewertet wird. Mit anderen Worten: Der bewertete Lernkorpus enthält das relevante Wissen, d.h. die Regeln, nach denen ein bisher unbekannter Input bewertet wird. Er entspricht dem Regelwerk des Schachs.

Das KI-System für eine Mustererkennung ist in diesem Sinn offen, wenn der Lernkorpus noch nicht einbezogen ist, mit dem bewerteten Korpus jedoch wird ein solches System ein geschlossenes. Genauso wie das Schachprogramm durch die Spielregeln klare Grenzen hat, bekommt auch die Mustererkennung ein klares Korsett, das letztlich das Outcome deterministisch definiert. Sobald die Bewertung erfolgt ist, kann eine rein mechanische Intelligenz das Verhalten innerhalb der getroffenen Grenzen optimieren – und dies letztlich in einem Perfektionsgrad, der mir als Mensch nie möglich sein wird.

Wer aber bestimmt den Inhalt des Lernkorpus, der das Mustererkennungsprogramm zu einem (technisch) geschlossenen System macht? Es sind immer menschliche Experten, die die Musterinputs bewerten. Der Mensch also macht die im Prinzip offene Aufgabe der Mustererkennung mittels des von ihm bewerteten Korpus zu einer geschlossenen Aufgabe, die ein mechanischer Algorithmus lösen kann.

In beiden Fällen – dem primär geschlossenen Spielprogramm (Schach und Go), wie auch dem sekundär geschlossenen Mustererkennungsprogramm – findet der Algorithmus eine geschlossene Situation vor; und das ist die Voraussetzung dafür, dass eine künstliche, d.h. mechanische Intelligenz überhaupt funktionieren kann.

Fazit 1:
Die KI-Algorithmen können nur in geschlossenen Räumen arbeiten.

Bei der Mustererkennung liefert der von Menschen geschaffene Lernkorpus diesen geschlossenen Raum.

Fazit 2:
Echte Intelligenz funktioniert auch in offenen Situationen.


Gibt es Intelligenz ohne Absicht?

Warum kann die künstliche Intelligenz im offenen Raum ohne Bewertungen von aussen nicht funktionieren? Weil die Bewertungen von aussen erst die Resultate der künstlichen Intelligenz ermöglichen. Und die Bewertungen können nicht mechanisch (algorithmisch) von der KI gegeben werden, sondern haben stets mit den An- und Absichten der Bewerter zu tun.

Neben der Unterscheidung zwischen offenen und geschlossenen Systemen, kann uns die Analyse von KI-Systemen somit noch mehr über die wirkliche Intelligenz zeigen. Künstliche und natürliche Intelligenz unterscheiden sich nämlich auch darin, wie weit bei ihnen für ihre Entscheidungen die jeweilige Absicht eine Rolle spielt.

Bei Schachprogrammen ist das Ziel klar, der gegnerische König soll schachmatt gesetzt werden. Das Ziel, das die Bewertung der Züge bestimmt, nämlich die Absicht zu siegen, muss nicht vom Programm selber mühsam erkannt werden, sondern ist von vornherein gegeben.

Auch bei der Mustererkennung ist die Rolle der Bewertungsabsicht entscheidend, denn welche Arten von Mustern sollen überhaupt unterschieden werden? Fremde Panzer versus eigene Panzer? Radpanzer versus Kettenpanzer? Funktionsfähige versus defekte? Alle diese Unterscheidungen machen Sinn, die KI muss aber anhand des Korpus auf ein bestimmtes Ziel, auf eine bestimmte Absicht eingestellt und justiert werden. Ist der Korpus einmal in einer bestimmten Richtung bewertet, kann nicht plötzlich ein anderes Merkmal daraus abgeleitet werden.

Wie beim Schachprogramm ist die künstliche Intelligenz nicht imstande, das Ziel selbständig herauszufinden, beim Schachprogramm versteht sich das Ziel (Schachmatt) von selber, bei der Mustererkennung müssen sich die beteiligten Bewerter über das Ziel (fremde/eigene, Rad-/Kettenpanzer) vorgängig einig sein. In beiden Fällen kommen Ziel und Absicht von aussen.

Natürliche Intelligenz hingegen kann sich selber darüber klar werden, was wichtig und was unwichtig ist und welche Ziele sie verfolgt. Die aktive Absicht ist m.E. eine unverzichtbare Eigenschaft der natürlichen Intelligenz und kann nicht künstlich konstruiert werden.

Fazit 3:
Im Gegensatz zur künstlichen zeichnet sich die natürliche Intelligenz dadurch aus, dass sie die eigenen Absichten beurteilen und bewusst ausrichten kann.


Dies ist ein Beitrag zum Thema künstliche Intelligenz. Weitere Beiträge finden Sie über die Übersichtsseite zum Thema KI.

Übersicht über die KI-Systeme

Alle bis jetzt untersuchten Systeme, inkl. Deep Learning, lassen sich in ihrem Kern auf zwei Methoden zurückführen, die regel- und die korpusbasierte. Dies gilt auch für die bisher nicht besprochenen Systeme, nämlich den einfachen Automaten und die hybriden Systeme. Letztere kombinieren die beiden Herangehensweisen.

Wenn wir diese Varianten integrieren, gelangen wir zur folgenden Übersicht:

A: Regelbasierte Systeme

Regelbasierte Systeme basieren auf Rechenregeln. Bei diesen Regeln handelt es sich immer um ‹IF-THEN› Befehle, also um Anweisungen, die einem bestimmten Input ein bestimmtes Ergebnis zuweisen. Diese Systeme sind immer deterministisch, d.h. ein bestimmter Input führt immer zum gleichen Resultat. Ebenfalls sind diese Systeme immer explizit, d.h. es gibt keine Vorgänge, die nicht sichtbar gemacht werden können und das System ist – mindestens im Prinzip – immer vollständig durchschaubar. Regelbasierte Systeme können allerdings recht komplex werden.

A1: Einfacher Automat (Typ Taschenrechner)
Einfacher Automat
Abb. 1: Einfacher Automat

Regeln werden auch als Algorithmen («Algo» in Abb. 1) bezeichnet. Selbstverständlich können mit einfachen Automaten auch sehr komplexe Berechnungen durchgeführt werden und Input und Output (Resultat) müssen nicht Zahlen sein. Der einfache Automat zeichnet sich vor den anderen Systemen dadurch aus, dass er keine spezielle Wissensbasis und keinen Korpus braucht, sondern mit wenigen Rechenregeln auskommt.

Vielleicht würden Sie den Taschenrechner nicht als KI-System bezeichnen, doch die Unterschiede zu den höher entwickelten Systemen bis hin zum Deep Learning sind nur gradueller Natur – bzw. von genau der Art, wie sie hier auf dieser Seite beschrieben werden. Komplexe Rechenleistungen erscheinen uns schnell einmal als intelligent, besonders dann, wenn wir sie mit unseren menschlichen Gehirnen nicht so einfach nachvollziehen können. Das gilt bereits für einfache Rechenoperationen wie Divisionen und Wurzelziehen, bei denen wir schnell an unsere Grenzen stossen. Gesichtserkennung erscheint uns hingegen vergleichsweise einfach, weil wir das meist auch ohne Computer ganz gut können. Übrigens gehört Mühlespielen auch in die Kategorie A1, es braucht zwar eine gewisse Intelligenz, um es zu spielen, aber es ist vollständig und einfach mit einem KI-Programm vom Typ A1 beherrschbar.

A2: Wissensbasiertes System
Erstellen Wissensbasis
Abb. 2: Erstellen einer Wissensbasis

Diese Systeme unterscheiden sich von einfachen Automaten dadurch, dass ein Teil ihrer Regeln in einer Wissensbasis ausgelagert ist. Abb. 2 weist darauf hin, dass diese Wissensbasis von einem Menschen aufgebaut wird; Abb. 3 zeigt, wie sie angewendet wird. Die Intelligenz steckt in den Regeln, sie kommt vom Menschen – bei der Anwendung reicht dann die Wissensbasis allein.

Anwenden eines wissensbasierten Systems
Abb. 3: Anwenden eines wissensbasierten Systems

Die Inferenzmaschine («IM» in Abb. 2 und 3) entspricht den Algorithmen der einfachen Automaten in Abb. 1. Im Prinzip handelt es sich bei den Algorithmen, der Inferenzmaschine und den Regeln der Wissensbasen immer um Regeln, also um explizite ‹IF-THEN›- Anweisungen. Diese können allerdings unterschiedlich komplex verwoben und verschachtelt sein. Sie können sich auf Zahlen oder auf Begriffe beziehen.

Die Regeln in der Wissensbasis sind nun den Regeln der Inferenzmaschine untergeordnet. Letztere kontrollieren den Fluss der Interpretation, d.h. sie entscheiden, welche Regeln der Wissensbasis anzuwenden und wie sie auszuführen sind. Die Regeln der Inferenzmaschine sind das eigentliche Programm, das vom Computer gelesen und ausgeführt wird. Die Regeln der Wissensbasis hingegen werden vom Computer nicht direkt, sondern indirekt über die Anweisungen der Inferenzmaschine ausgeführt. Es handelt sich also um eine Verschachtelung – wie sie im Übrigen typisch für die Befehle (Software) in einem Computer sind. Auch die Regeln der Inferenzmaschine werden ja nicht direkt ausgeführt, sondern von tieferen Regeln gelesen, bis hinunter zur Maschinensprache im Kern (Kernel) des Rechners. Im Prinzip sind aber die Regeln der Wissensbasis genauso Rechenregeln wie die Regeln der Inferenzmaschine, nur eben in einer ‹höheren› Programmiersprache. Diese zeichnet sich vorteilhafterweise dadurch aus, dass sie für die Domain-Experten, d.h. für die menschlichen Fachexperten, besonders einfach und sicher les- und handhabbar ist.

Bezüglich des in der Inferenzmaschine verwendeten Logiksystems unterscheiden wir regelbasierte Systeme

– mit statischer Logik (Typ Ontologien / Semantic Web),
– mit dynamischer Logik (Typ Begriffsmoleküle).

Siehe dazu den Beitrag ‹Die drei Neuerung der regelbasierte KI›.

B: Korpusbasierte Systeme

Korpusbasierte Systeme werden in drei Schritten erstellt (Abb. 4). Im ersten Schritt wird ein möglichst grosser Korpus gesammelt. Die Sammlung enthält keine Regeln, sondern Daten. Regeln wären Anweisungen, die Daten des Korpus hingegen sind keine Anweisungen; es handelt sich um reine Datensammlungen, Texte, Bilder, Spielverläufe, etc.

Erstellen eines korpusbasierten Systems
Abb. 4: Erstellen eines korpusbasierten Systems

Diese Daten müssen nun – im zweiten Schritt – bewertet werden. In der Regel macht das ein Mensch.

Im dritten Schritt wird ein sogenanntes neuronales Netz auf Basis des bewerteten Korpus trainiert. Das neuronale Netz ist im Gegensatz zum Datenkorpus wieder eine Regelsammlung, wie es die Wissensbasis der regelbasierten Systeme (Typ A) ist. Im Unterschied zu diesen wird das neuronale Netz aber nicht von einem Menschen trainiert, sondern vom bewerteten Korpus. Das neuronale Netz ist – im Gegensatz zur Wissensbasis – nicht explizit, d.h. nicht so ohne Weiteres einsehbar.

Anwenden eines korpusbasierten Systems
Abb. 5: Anwenden eines korpusbasierten Systems

Bei der Anwendung kommt das neuronale Netz wie das regelbasierte nun ganz ohne Menschen aus. Es braucht nicht einmal mehr den Korpus. Alles Wissen steckt in den Algorithmen des neuronalen Netzes. Zudem ist das neuronale Netz durchaus in der Lage, auch schlecht strukturierten Inhalt, z.B. Pixelhaufen (Bilder) zu interpretieren, bei denen regelbasierte Systeme (Typ B) ganz schnell an ihre Grenzen stossen. Im Gegensatz zu diesen sind die korpusbasierten Systeme aber weniger erfolgreich, was komplexen Output betrifft, d.h. die Zahl der möglichen Output-Resultate darf nicht zu gross sein, da sonst die Trefferschärfe des Systems leidet. Am besten geeignet sind binäre Outputs vom Typ ‹eigener/fremder Panzer› (siehe Vorbeitrag) oder ‹männlicher/weiblicher Autor› bei der Bewertung von Twitter-Texten.

Drei Untertypen der korpusbasierten KI

Die drei Untertypen unterscheiden sich dadurch, wer die Bewertung des Korpus durchführt.

Die drei Typen der korpusbasierten Systeme

Abb. 6: Die drei Typen der korpusbasierten Systeme

B1: Typ Mustererkennung

Diesen Typ (oberes System in Abb. 6) habe ich im «Panzerbeispiel» beschrieben. Die Bewertung des Korpus erfolgt dabei durch einen menschlichen Experten.

B2: Typ Suchmaschine

Siehe mittleres Schema in Abb. 6. Bei diesem Typ erfolgt die Bewertung des Korpus durch die Kunden. Ein solches System ist im Beitrag Suchmaschine beschrieben.

B3: Typ Deep Learning

Bei diesem Typ (unterstes System in Abb. 6) ist im Gegensatz zu den oberen kein Mensch nötig, um das neuronale Netz zu bewerten. Die Bewertung ergibt sich allein durch den Spielverlauf. Dass Deep Learning aber nur unter sehr restriktiven Bedingungen möglich ist, wird im Beitrag Spiele und Intelligenz erläutert.

C: Hybride Systeme

Selbstverständlich können die oben genannten Methoden (A1 und A2, B1 bis B3) in der Praxis auch verbunden werden.

So kann z.B. ein System zur Gesichtsidentifikation so funktionieren, dass ein korpusbasiertes System des Typs B1 in den Bildern einer Überwachungskamera Gesichter als solche erkennt und in den Gesichtern die entscheidenden Formen von Augen, Mund usw. Anschliessend errechnet ein regelbasiertes System des Typs A2 aus den von System  B1 markierten Punkten die Grössenverhältnisse von Augen, Nasen, Mund etc., die ein individuelles Gesicht auszeichnen. Durch eine solche Kombination von korpus- und regelbasiertem System können auf den Bildern individuelle Gesichter erkannt werden. Der erste Schritt wäre für ein System A2 nicht möglich, der zweite Schritt für ein System B1 viel zu kompliziert und ungenau. Ein Hybrid macht es möglich.


Im Folgebeitrag beantworte ich die Frage, wo in all diesen Systemen nun die Intelligenz steckt. Aber vermutlich haben Sie die Antwort längst selbst erkannt.


Dies ist ein Beitrag zum Thema künstliche Intelligenz.

Wie real ist das Wahrscheinliche?

Was nicht im Korpus ist, ist für die KI unsichtbar

Korpusbasierte KI-Systeme sind auf Erfolgskurs. Sie sind ‹disruptiv›, d.h. sie verändern unsere Gesellschaft nachhaltig und in sehr kurzer Zeit. Genügend Gründe also, sich zu vergegenwärtigen, wie diese Systeme effektiv funktionieren.

In den Vorbeiträgen habe ich  dargelegt, dass diese Systeme aus zwei Teilen bestehen, nämlich einem Daten-Korpus und einem neuronalen Netz. Selbstverständlich kann das Netz nichts erkennen, was nicht bereits im Korpus steckt. Die Blindheit des Korpus setzt sich automatisch im neuronalen Netz fort und die KI kann letztlich nur hervorbringen, was bereits in den Daten des Korpus vorgegeben ist. Ebenso verhält es sich mit Fehleingaben im Korpus. Auch diese finden sich in den Resultaten der KI und mindern insbesondere ihre Treffschärfe.

Wenn man sich die Wirkweise der KI vergegenwärtigt,  ist dieser Sachverhalt banal, denn der Lernkorpus ist die Grundlage für diese Art künstliche Intelligenz. Nur was im Korpus ist, kann im Resultat erscheinen und Fehler und Unschärfen des Korpus vermindern automatisch die Aussagekraft.

Weniger banal ist ein anderer Aspekt, der mit der künstlichen Intelligenz der neuronalen Netze ebenfalls essenziell verbunden ist. Es handelt sich um die Rolle der Wahrscheinlichkeit. Neuronale Netze funktionieren über Wahrscheinlichkeiten. Was genau heisst das und wie wirkt sich das in der Praxis aus?

Das neuronale Netz bewertet nach Wahrscheinlichkeit

Ausgangslage

Schauen wir wieder unsere Suchmaschine vom Vorbeitrag an: Ein Kunde unserer Suchmaschine gibt einen Suchstring ein. Andere Kunden haben bereits vorher den gleichen Suchstring eingegeben. Wir schlagen deshalb dem Kunden diejenigen Websites vor, die bereits die früheren Kunden ausgewählt haben. Weil das unübersichtlich viele sein können, wollen wir dem Kunden diejenigen zuoberst zeigen, die für ihn am interessantesten sind (siehe Vorbeitrag). Dazu bewerten wir alle Kunden gemäss ihren bisherigen Suchanfragen. Wie wir das im Detail machen, ist natürlich unser Geschäftsgeheimnis, schliesslich wollen wir gegenüber der Konkurrenz einen Vorsprung herausholen. Wie immer aber wir das auch tun – und wie immer es die Konkurrenz auch tut – am Schluss erhalten wir eine Gewichtung der Vorschläge der bisherigen Nutzer. Anhand dieser Gewichtung wählen wir die Vorschläge aus, die wir dem Fragesteller präsentieren, und die Reihenfolge, in der wir sie ihm zeigen. Und dabei sind die Wahrscheinlichkeiten entscheidend.

Beispiel

Nehmen wir an, der Anfragesteller A stellt  eine Suchanfrage an unsere Suchmaschine und die beiden Kunden B und C haben bereits die gleiche Suchanfrage wie A gestellt  und ihre Wahl, d.h. die Adressen der von ihnen gewählten Websites, in unserem gut gefüllten Korpus hinterlassen. Welche Auswahl sollen wir nun A bevorzugt präsentieren, die von B oder die von C?

Jetzt schauen wir uns die Bewertungen der drei Kunden an: Wie sehr stimmt das Profil von B und C mit dem Kunden A überein? Nehmen wir an, wir kommen auf folgende Übereinstimmungen:

Kunde B:  80%
Kunde C: 30%

Selbstverständlich nehmen wir an, dass Kunde B mit A besser übereinstimmt als C, und A deshalb mit den Antworten von B besser bedient ist.

Ist das aber sicher so?

Die Frage ist berechtigt, denn schliesslich besteht zu keinem der beiden anderen User eine vollständige Übereinstimmung. Vielleicht betreffen gerade die 30%, mit denen A und C übereinstimmen, das Gebiet der aktuellen Suchanfrage von A. Da wäre es schade, die Antwort von B bevorzugt zu platzieren, insbesondere wenn die 80% Übereinstimmung zu B ganz andere Gebiete betrifft, die mit der aktuellen Suchanfrage nichts zu tun haben. Zugegeben, die skizzierte Abweichung von der Wahrscheinlichkeit ist im konkreten Fall unwahrscheinlich, aber sie ist nicht unmöglich – das ist die eigentliche Crux mit den Wahrscheinlichkeiten.

Nun, wir entscheiden uns in diesem Fall vernünftigerweise für B, und wir können sicher sein, dass die Wahrscheinlichkeit auf unserer Seite ist. Für unseren Geschäftserfolg können wir uns getrost auf die Wahrscheinlichkeit verlassen. Warum?

Das hängt mit dem Prinzip der ‹grossen Zahl‹ zusammen. Für den einzelnen Fall kann – wie oben geschildert – die Antwort von C wirklich die bessere sein. In den meisten Fällen aber wird die Antwort von B unserem Kunden besser gefallen und wir tun gut daran, ihm diese Antwort zu geben. Das ist das Prinzip der ‹grossen Zahl›. Es liegt dem Phänomen Wahrscheinlichkeit essenziell zugrunde:

Im Einzelfall kann etwas geschehen, was unwahrscheinlich ist, für viele Fälle können wir uns aber darauf verlassen, dass meistens das Wahrscheinliche geschieht.

Fazit für unsere Suchmaschine
  1. Wenn wir uns also dafür interessieren, in den meisten Fällen recht zu bekommen, halten wir uns an die Wahrscheinlichkeit.
  2. Wir nehmen dabei in Kauf, dass wir in seltenen Fällen daneben greifen.
Fazit für die korpusbasierte KI generell

Was für unsere Suchmaschine gilt, gilt ganz generell für jede korpusbasierte KI, da eine solche immer mit Wahrscheinlichkeiten funktioniert. Somit lautet das Fazit für die korpusbasierte KI:

  1. Wenn wir uns dafür interessieren, in den meisten Fällen recht zu bekommen, halten wir uns an die Wahrscheinlichkeit.
  2. Wir nehmen dabei in Kauf, dass wir in seltenen Fällen daneben greifen.

Wir müssen bei der korpusbasierten KI mit einer inhärenten Schwäche rechnen, einer Art Achillesferse einer sonst hochpotenten Technologie. Diese Ferse sollten wir sorgfältig weiter beobachten:

  1. Vorkommen:
    Wann tritt der Fehler eher auf, wann kann man ihn eher vernachlässigen? Dies hängt mit der Grösse des Korpus und seiner Qualität, aber auch mit der Art der Fragestellung zusammen.
  2. Konsequenzen:
    Was hat es für Folgen, wenn seltene Fälle vernachlässigt werden?
    Kann das permanente Mitteln und Beachten nur der wahrscheinlichsten Lösungen als intelligent bezeichnet werden?
  3. Zusammenhänge:
    Für die grundlegenden Zusammenhänge interessant ist der Bezug zum Begriff der Entropie: Der 2. Hauptsatz der Wärmelehre besagt, dass in einem geschlossenen System immer das Wahrscheinlichere geschieht und die Wärmelehre misst diese Wahrscheinlichkeit anhand der Variablen S, welche sie als Entropie bezeichnet.
    Das Wahrscheinliche geschieht, in der Wärmelehre und in unserer Suchmaschine – wie aber wählt eine natürliche Intelligenz?

Dies ist ein Beitrag zum Thema künstliche Intelligenz. Im nächsten Beitrag geht es um Spiele und Intelligenz, konkret um den Unterschied zwischen Schach und Jassen.

Was der Korpus weiss – und was nicht

Die Erstellung des Korpus

In einem Vorbeitrag haben wir gesehen, wie der Korpus – die Basis für das neuronale Netz der KI – erstellt wird. Das neuronale Netz kann den Korpus auf raffinierte Weise interpretieren, aber selbstverständlich kann das neuronale Netz nichts aus dem Korpus herausziehen, was nicht drin steckt.

Das neuronale Netz holt das Wissen aus seinem Korpus
Abb. 1: Das neuronale Netz holt das Wissen aus seinem Korpus

Wie wird der Korpus erstellt? Ein Fachexperte ordnet Bilder einer bestimmten Klasse, einem bestimmten Typus zu, z.B. ‹fremde Panzer› versus ‹eigene Panzer›. Diese Zuordnungen des Experten sind in Abb. 2 die roten Pfeile, welche z.B. die Panzerbilder bewerten.

Abb. 2: Erstellung der Zuordnungen im Korpus
Abb. 2: Erstellung der Zuordnungen im Korpus

Selbstverständlich müssen die durch den menschlichen Experten erfolgten Zuordnungen der einzelnen Bilder zu den Zielkategorien korrekt sein. Doch das reicht nicht. Es bestehen prinzipielle Grenzen für die Auswertbarkeit eines Korpus durch ein noch so raffiniertes neuronales Netz.

Der Zufall regiert im zu kleinen Korpus

Wenn ich nur farbige Bilder der eigenen und schwarzweisse Bilder der fremden Panzer habe (siehe Einstiegsbeitrag zur KI), dann kann sich das System leicht irren und alle farbigen der eigenen und die schwarzweissen der fremden Armee zuordnen. Mit einem genügend grossen Korpus kann dieser Mangel zwar behoben werden, doch zeigt das Beispiel, wie wichtig die richtige Bestückung des Korpus ist. Wenn ein Zufall (farbig/schwarzweiss) entscheidend in den Korpus hineinspielt, wird das System falsche Schlüsse ziehen. Der Zufall spielt dabei eine umso grössere Rolle, je kleiner der Korpus, aber auch je grösser die Anzahl der möglichen ‹Outcomes› (= Anzahl der prinzipiell möglichen Resultate) ist.

Neben diesen relativen Hindernissen gibt es aber auch prinzipielle Grenzen der Auswertbarkeit eines KI-Korpus. Darauf gehen wir jetzt ein.

Raupen- oder Radpanzer?

Was im Korpus nicht drin ist, kann auch nicht herausgeholt werden. Selbstverständlich kann ich mit einem Panzer-Korpus keine Flugzeuge klassifizieren.

Neuronales Netz mit Panzern
Abb 3: Die Bewertung entscheidet – Korpus mit eigenen und fremden Panzern und entsprechend programmiertem Netz.

Was aber ist, wenn unser Panzersystem herausfinden soll, ob es sich um Raupen- oder um Radpanzer handelt? Im Prinzip können im Korpus ja Bilder von beiden Sorten von Panzern enthalten sein. Wie kann die Panzer-KI aus unserem Beispiel das erkennen?

Die einfache Antwort ist: gar nicht. Im Korpus hat das System zwar viele Bilder von Panzern und weiss bei jedem, ob es ein fremder oder eigener ist. Aber ist es ein Radpanzer oder nicht? Diese Information steckt im Korpus (noch) nicht drin und kann deshalb von der KI nicht herausgezogen werden. Zwar kann ein Mensch jedes einzelne Bild entsprechend beurteilen, so wie er das mit der Eigenschaft ‹fremd/eigen› gemacht hat. Aber dann ist es eine KI-fremde, von aussen zugeführte Intelligenz, die das tut. Das neuronale Netz kann das nicht selber leisten, da es nichts über Raupen oder Räder weiss. Es hat nur gelernt, eigene von fremden Panzern zu unterscheiden. Für jede neue Kategorie muss zuerst die Information in den Korpus gegeben (neue rote Pfeile in Abb. 2) und dann das neuronale Netz für die neuen Fragen geschult werden.

Eine solche Schulung muss zwar nicht zwingend am Panzer-Korpus erfolgen. Das System könnte auch anhand eines Korpus von ganz anderen Fahrzeugen lernen, ob sich diese sich auf Rädern oder Raupen bewegen. Auch wenn sich der Unterschied automatisch auf den Panzerkorpus übertragen lässt, muss doch das externe Räder/Raupen-System vorgängig trainiert werden – und zwar mit Zuordnungen, die wieder ein Mensch gemacht hat.

Selber, ohne vorgegebene Beispiele, findet das KI-System dies nicht heraus.

Fazit

  1. Aus einem Korpus können nur Schlüsse gezogen werden, die im Korpus angelegt sind.
  2. Die Kategorie-Zuordnungen (die roten Pfeile in Abb. 2) kommen immer von aussen, d.h. von einem Menschen.

In unserem Beispiel haben wir mit dem Panzerbeispiel eine typische Bilderkennungs-KI untersucht. Aber gelten die daraus gezogenen Schlüsse (siehe Fazit oben) auch für andere korpusbasierte Systeme? Und gibt es nicht so etwas wie ‹Deep Learning›, also die Möglichkeit, dass ein KI-System ganz von selber lernt?

Schauen wir deshalb im nächsten Beitrag einen ganz anderen Typ mit korpusbasierter KI an.


Dies ist ein Beitrag zum Thema künstliche Intelligenz.


 

Korpusbasierte KI: Wo steckt die Intelligenz?

Vorbemerkung

Im Vorbeitrag haben wir gesehen, dass bei der regelbasierten KI die Intelligenz in den Regeln steckt. Diese Regeln sind menschengemacht und das System ist so intelligent wie die Menschen, die die Regeln geschrieben haben. Wie sieht das nun bei der korpusbasierten Intelligenz aus?

Die Antwort ist etwas komplizierter als bei den regelbasierten Systemen. Schauen wir deshalb den Aufbau eines solchen korpusbasierten Systems genauer an. Er geschieht in drei Schritten:

  1. Erstellen einer möglichst grossen Datensammlung (Korpus)
  2. Bewertung dieser Datensammlung
  3. Training des neuronalen Netzes (Lernphase)

Sobald das Netz erstellt ist, kann es angewendet werden:

  1.  Anwendung des neuronalen Netzes

Schauen wir die vier Schritte genauer an und überlegen wir uns dabei, worauf es ankommt und wo die Intelligenz in das korpusbasierte System hineinkommt.

Schritt 1: Erstellung der Datensammlung

In unserem Panzerbeispiel besteht der Korpus (die Datensammlung) aus Photographien von Panzern. Bilder sind typisch für korpusbasierte Intelligenz, aber die Sammlung kann natürlich auch andere Informationen enthalten, z.B. Suchanfragen von Kunden einer Suchmaschine oder GPS-Daten von Handys. Typisch ist, dass die Daten von jedem einzelnen Eintrag aus so vielen Einzelelementen (z.B. Pixeln) bestehen, dass Ihre Auswertung mit bewusst von Menschen konstruierten Regeln zu aufwendig wird. Dann lohnt sich ein regelbasiertes System nicht mehr.

Die Sammlung der Daten reicht aber nicht aus. Sie müssen jetzt auch bewertet werden.

Schritt 2: Bewertung des Korpus
Korpusbasiertes System
Abb. 1: Korpusbasiertes System

Abb. 1 zeigt das bereits bekannte Bild aus unserem Panzerbeispiel. Auf der linken Seiten sehen Sie den Korpus. Dieser ist in der Abbildung bereits bewertet, die Bewertung ist symbolisiert durch die kleinen schwarzen und grünen Fähnchen (Flags) links an jedem Panzerbild.

Man kann sich den bewerteten Korpus vereinfacht als eine zweispaltige Tabelle vorstellen. In der linken Spalte sitzt die Bildinformation, in der rechten die Bewertung und der Pfeil dazwischen ist die Zuordnung, die somit ein wesentlicher Teil des Korpus wird, sie sagt nämlich, zu welcher Kategorie (e oder f) das jeweilige Bild gehört, wie es also bewertet wird.

Korpus mit Bewertungen
Tabelle 1: Korpus mit Bewertungen (e=eigen, f=fremd)

Typischerweise sind die Informationsmengen in den beiden Spalten von sehr unterschiedlicher Grösse. Während die Bewertung in der rechten Spalte in unserem Panzerbeispiel aus genau einem Bit besteht, enthält das Bild der linken Spalte alle Pixel der Photographie; zu jedem Pixel sind Lage, Farbe usw. abgespeichert, also eine ziemlich grosse Datenmenge. Dieser Unterschied im Grössenverhältnis ist typisch für korpusbasierte Systeme – und falls Sie philosophisch interessiert sind, möchte ich auf den Bezug zum Thema Informationsreduktion und Entropie hinweisen . Im Moment geht es uns aber um die Intelligenz in den korpusbasierten KI-Systemen und wir halten dazu fest, dass im Korpus zu jedem Bild seine korrekte Zielkategorie fest zugeordnet wird.

Bei dieser Zuordnung wissen wir nicht, wie sie geschieht, denn sie wird durch einen Menschen durchgeführt, mit den Neuronen in seinem eigenen Kopf, deren genaues Verhalten ihm wohl kaum bewusst ist. Er könnte also nicht Regeln dafür angeben. Hingegen weiss er, was die Bilder darstellen, und vermerkt das im Korpus, eben mit der Zuordnung der entsprechenden Kategorie. Diese Zuordnung kommt von aussen durch den Menschen in den Korpus, sie ist zu hundert Prozent menschengemacht. Gleichzeitig ist diese Bewertung eine absolute Bedingung und die Grundlage für den Aufbau des neuronalen Netzes. Auch später, wenn das fertig trainierte neuronale Netz den Korpus mit den von aussen eingebrachten Zuordnungen nicht mehr braucht, war er doch vorher notwendig, damit das Netz überhaupt entsteht und arbeiten kann.

Woher stammt also die Intelligenz bei der Zuordnung der Kategorien e) und f)? Es ist letztlich ein Mensch, der diese Zuordnung macht und auch falsch machen kann; es handelt sich um seine Intelligenz. Sobald die Zuordnung im Korpus einmal notiert ist, handelt es sich nicht mehr um aktive Intelligenz, sondern um fixiertes Wissen.

Bewertung des Korpus
Abb. 2: Bewertung des Korpus

Die Bewertung des Korpus ist eine entscheidende Phase, und Intelligenz ist dabei zweifellos nötig. Die zusammen getragene Datensammlung muss bewertet werden und der Fachexperte, der diese Bewertung durchführt, muss garantieren, dass sie korrekt ist. In Abb. 2 ist die Intelligenz des Fachexperten durch den gelben Kreis repräsentiert. Der Korpus erhält das so erstellte Wissen über die Zuordnungen; die Zuordnungen selber sind in Abb. 2 als rote Pfeile dargestellt.

Wissen ist etwas anderes als die Intelligenz. Es ist einem gewissen Sinn passiv. In diesem Sinn handelt es sich bei den im Korpus festgehaltenen Informationen um Wissensobjekte, d.h. um Zuordnungen, die formuliert sind und nicht mehr bearbeitet werden müssen. Intelligenz hingegen ist ein aktives Prinzip, das selber Wertungen vornehmen kann, so wie es der menschliche Experte tut. Bei den Elementen im Korpus aber handelt es sich um Daten oder dann bei den erwähnten Zuordnungen um Resultate der Intelligenz von Experten – also um fest formuliertes Wissen.

Um dieses Wissen von der Intelligenz zu unterscheiden, habe ich es in Abb. 2 nicht gelb, sondern grün markiert.

Wir unterscheiden somit sinnvollerweise drei Dinge:

Daten (die Datensammlung im Korpus)
Wissen (die durchgeführte Bewertung dieser Daten)
Intelligenz (die Fähigkeit, diese Bewertung durchzuführen).

Schritt 3: Training des neuronalen Netzes
Lernphase
Abb. 3: Das neuronale Netz lernt das Wissen des Korpus

In der Trainingsphase wird auf Basis des Lernkorpus das neuronale Netz aufgebaut. Damit das funktioniert, ist wieder eine beträchtliche Intelligenz notwendig, diesmal kommt sie vom KI-Experten, der das Funktionieren der Lernphase ermöglicht und steuert. Dabei spielen Algorithmen eine Rolle, die dafür verantwortlich sind, dass das Wissen im Korpus korrekt ausgewertet wird und das neuronale Netz genau die Form erhält, die bewirkt, dass alle im Korpus festgehaltenen Zuordnungen auch durch das Netz nachvollzogen werden können.

Die Wissensextraktion und die dabei verwendeten Algorithmen sind durch den braunen Pfeil zwischen Korpus und Netz symbolisiert. Wenn man will, kann man ihnen durchaus eine gewisse Intelligenz zubilligen, doch sie tun nichts, was nicht vom IT-Experten bzw. vom Wissen im Korpus vorgegeben wird. Das entstehende neuronale Netz selber hat keine eigene Intelligenz, sondern ist das Ergebnis dieses Prozesses und somit der Intelligenz der Experten. Es enthält aber beträchtliches Wissen und ist deshalb in Abb. 3 grün dargestellt, wie das Wissen im Korpus in Abb. 2. Im Gegensatz zum Korpus sind die Zuweisungen (rote Pfeile) aber jetzt wesentlich komplexer, genau so, wie es in einem neuronalen Netz eben komplexer zu und her geht als in einer einfachen zweispaltigen Tabelle (Tabelle 1).

Und noch etwas unterscheidet das Wissen im Netz vom Wissen im Korpus: Im Korpus handelt es sich um Wissen über Einzelfälle, im Netz hingegen ist das Wissen abstrakt. Es kann deshalb auch auf bisher unbekannte Fälle angewendet werden.

Schritt 4: Anwendung
Anwendung eines neuronalen Netzes
Abb. 4: Anwendung eines neuronalen Netzes

In Abb. 4 wird ein bisher unbekanntes Bild vom neuronalen Netz bewertet und entsprechend dem im Netz gespeicherten Wissen kategorisiert. Dabei ist kein Korpus und auch kein Experte mehr nötig, es reichen die ‚geschulten‘, aber jetzt feststehenden Verdrahtungen im neuronalen Netz. Das Netz ist in diesem Moment nicht mehr in der Lage, etwas dazuzulernen. Es ist aber fähig zu durchaus eindrücklichen Leistungen mit ganz neuem Input. Diese Leistungen werden ermöglicht durch die vorgängigen Arbeiten, also den Aufbau des Korpus, die in ihm enthaltenen, (hoffentlich) korrekten Bewertungen und den Algorithmen der Lernphase. Hinter dem Lernkorpus steckt die menschliche Intelligenz des Fachexperten, hinter den Algorithmen der Trainingsphase die menschliche Intelligenz des IT-Experten.

Fazit

Was uns als künstliche Intelligenz erscheint, ist das Resultat der durchaus menschlichen, d.h. natürlichen Intelligenz der Fachexperten und IT-Spezialisten.


Dies ist ein Beitrag zum Thema künstliche Intelligenz. Im nächsten Beitrag schauen wir noch genauer hin. Wir schauen, was für Wissen in einem Korpus wirklich steckt. Und was die KI aus dem Korpus herausholen kann und was nicht.

Zur KI: Schnaps und Panzer

KI im letzten Jahrhundert

KI ist heute ein grosses Schlagwort, war aber bereits in den 80er und 90er Jahren des letzten Jahrhunderts ein Thema, das für mich auf meinem Gebiet des Natural Language Processing interessant war. Es gab damals zwei Methoden, die gelegentlich als KI bezeichnet wurden und die unterschiedlicher nicht hätten sein können. Das Spannende daran ist, dass diese beiden unterschiedlichen Methoden heute noch existieren und sich weiterhin essenziell voneinander unterscheiden.

KI-1: Schnaps

Die erste, d.h. die Methode, die bereits die allerersten Computerpioniere verwendeten, war eine rein algorithmische, d.h. eine regelbasierte. Beispielhaft für diese Art Regelsysteme sind die Syllogismen des Aristoteles:

Prämisse 1: Alle Menschen sind sterblich.
Prämisse 2: Sokrates ist ein Mensch.
Schlussfolgerung: Sokrates ist sterblich.

Der Experte gibt Prämisse 1 und 2 ein, und das System zieht dann selbstständig die Schlussfolgerung. Solche Systeme lassen sich mathematisch untermauern. Mengenlehre und First-Order-Logic (Aussagelogik ersten Grades) gelten oft als sichere mathematische Grundlage. Theoretisch waren diese Systeme somit wasserdicht abgesichert. In der Praxis sah die Geschichte allerdings etwas anders aus. Probleme ergaben sich durch die Tatsache, dass auch die kleinsten Details in das Regelsystem aufgenommen werden mussten, da sonst das Gesamtsystem «abstürzte», d.h. total abstruse Schlüsse zog. Die Korrektur dieser Details nahm mit der Grösse des abgedeckten Wissens überproportional zu. Die Systeme funktionierten allenfalls für kleine Spezialgebiete, für die klare Regeln gefunden werden konnten, für ausgedehntere Gebiete wurden die Regelbasen aber zu gross und waren nicht mehr wartbar. Ein weiteres gravierendes Problem war die Unschärfe, die vielen Ausdrücken eigen ist, und die mit solchen hart-kodierten Systemen schwer in den Griff zu bekommen ist.

Diese Art KI geriet also zunehmend in die Kritik. Kolportiert wurde z.B. folgender Übersetzungsversuch: Ein NLP-Programm übersetzte Sätze vom Englischen ins Russische und wieder zurück, dabei ergab die Eingabe:
«Das Fleisch ist willig, aber der Geist ist schwach» die Übersetzung:
«Das Steak ist kräftig, aber der Schnaps ist lahm.»

Die Geschichte hat sich vermutlich nicht genau so zugetragen, aber das Beispiel zeigt die Schwierigkeiten, wenn man versucht, Sprache mit regelbasierten Systemen einzufangen. Die Anfangseuphorie, die seit den 50er Jahren mit dem «Elektronenhirn» und seiner «maschinellen Intelligenz» verbunden worden war, verblasste, der Ausdruck «Künstliche Intelligenz» wurde obsolet und durch den Ausdruck «Expertensystem» ersetzt, der weniger hochgestochen klang.

Später, d.h. um 2000, gewannen die Anhänger der regelbasierten KI allerdings wieder Auftrieb. Tim Berners-Lee, Pionier des WWW, lancierte zur besseren Benutzbarkeit des Internets die Initiative Semantic Web. Die Experten der regelbasierten KI, ausgebildet an den besten technischen Hochschulen der Welt, waren gern bereit, ihm dafür Wissensbasen zu bauen, die sie nun Ontologien nannten. Bei allem Respekt vor Berners-Lee und seinem Bestreben, Semantik ins Netz zu bringen, muss festgestellt werden, dass die Initiative Semantic Web nach bald 20 Jahren das Internet nicht wesentlich verändert hat. Meines Erachtens gibt es gute Gründe dafür: Die Methoden der klassischen mathematischen Logik sind zu rigid, die komplexen Vorgänge des Denkens nachzuvollziehen – mehr dazu in meinen anderen Beiträgen, insbesondere zur statischen und dynamischen Logik. Jedenfalls haben weder die klassischen regelbasierten Expertensysteme des 20. Jahrhunderts noch die Initiative «Semantic Web» die hoch gesteckten Erwartungen erfüllt.

KI-2: Panzer

In den 90er Jahren gab es aber durchaus auch schon Alternativen, die versuchten, die Schwächen der rigiden Aussagenlogik zu korrigieren. Dazu wurde das mathematische Instrumentarium erweitert.

Ein solcher Versuch war die Fuzzy Logic. Eine Aussage oder eine Schlussfolgerung war nun nicht mehr eindeutig wahr oder falsch, sondern der Wahrheitsgehalt konnte gewichtet werden. Neben Mengenlehre und Prädikatenlogik hielt nun auch die Wahrscheinlichkeitstheorie Einzug ins mathematische Instrumentarium der Expertensysteme. Doch einige Probleme blieben: Wieder musste genau und aufwendig beschrieben werden, welche Regeln gelten. Die Fuzzy Logic gehört also ebenfalls zur regelbasierten KI, wenn auch mit Wahrscheinlichkeiten versehen. Heute funktionieren solche Programme in kleinen, wohlabgegrenzten technischen Nischen perfekt, haben aber darüberhinaus keine Bedeutung.

Eine andere Alternative waren damals die Neuronalen Netze. Sie galten als interessant, allerdings wurden ihre praktischen Anwendungen eher etwas belächelt. Folgende Geschichte wurde dazu herum

gereicht:

Die amerikanische Armee – seit jeher ein wesentlicher Treiber der Computertechnologie – soll ein neuronales Netz zur Erkennung von eigenen und fremden Panzern gebaut haben. Ein neuronales Netz funktioniert so, dass die Schlussfolgerungen über mehrere Schichten von Folgerungen vom System selber gefunden werden. Der Mensch muss also keine Regeln mehr eingeben, diese werden vom System selber erstellt.

Wie kann das System das? Es braucht dazu einen Lernkorpus. Bei der Panzererkennung war das eine Serie von Fotos von amerikanischen und russischen Panzern. Für jedes Foto war also bekannt, ob amerikanisch oder russisch, und das System wurde nun so lange trainiert, bis es die geforderten Zuordnungen selbstständig erstellten konnte. Die Experten nahmen auf das Programm nur indirekt Einfluss, indem sie den Lernkorpus aufbauten; das Programm stellte die Folgerungen im neuronalen Netz selbstständig zusammen – ohne dass die Experten genau wussten, aus welchen Details das System mit welchen Regeln welche Schlüsse zog. Nur das Resultat musste natürlich stimmen. Wenn das System nun den Lernkorpus vollkommen integriert hatte, konnte man es testen, indem man ihm einen neuen Input zeigte, z.B. ein neues Panzerfoto, und es wurde erwartet, dass es mit den aus dem Lernkorpus gefundenen Regeln das neue Bild korrekt zuordnete. Die Zuordnung geschah, wie gesagt, selbständig durch das System, ohne dass der Experte weiteren Einfluss nahm und ohne dass er genau wusste, wie im konkreten Fall die Schlüsse gezogen wurden.

Das funktionierte, so wurde erzählt, bei dem Panzererkennungsprogramm perfekt. So viele Fotos dem Programm auch gezeigt wurden, stets erfolgte die korrekte Zuordnung. Die Experten konnten selber kaum glauben, dass sie wirklich ein Programm mit einer hundertprozentigen Erkennungsrate erstellt hatten. Wie konnte so etwas sein? Schliesslich fanden sie den Grund: Die Fotos der amerikanischen Panzer waren in Farbe, diejenigen der russischen schwarzweiss. Das Programm musste also nur die Farbe erkennen, die Silhouetten der Panzer waren irrelevant.

Regelbasiert versus korpusbasiert

Die beiden Anekdoten zeigen, welche Probleme damals auf die regelbasierte und die korpusbasierte KI warteten.

  • Bei der regelbasierten KI waren es:
    – die Rigidität der mathematischen Logik
    – die Unschärfe unserer Wörter
    – die Notwendigkeit, sehr grosse Wissenbasen aufzubauen
    – die Notwendigkeit, Fachexperten für die Wissensbasen einzusetzen
  • Bei der korpusbasierten KI waren es:
    – die Intransparenz der Schlussfolgerungs-Wege
    – die Notwendigkeit, einen sehr grossen und relevanten Lernkorpus aufzubauen

Ich hoffe, dass ich mit den beiden oben beschriebenen, zugegebenermassen etwas unfairen Beispielen den Charakter und die Wirkweise der beiden KI-Typen habe darstellen können, mitsamt den Schwächen, die die beiden Typen jeweils kennzeichnen.

Die Herausforderungen bestehen selbstverständlich weiterhin.  In den folgenden Beiträgen werde ich darstellen, wie die beiden KI-Typen darauf reagiert haben und wo bei den beiden Systemen nun wirklich die Intelligenz sitzt. Als Erstes schauen wir die korpusbasierte KI an.

Dies ist ein Beitrag zum Thema künstliche Intelligenz.