Schlagwort-Archive: Oktave

Tonleitern

Sind unsere Tonleitern erklärbar?

Obwohl es tausende von verschiedenen Tonleitern gibt, haben alle gewisse Gemeinsamkeiten. Woher kommen diese Gemeinsamkeiten und wie sind die Tonleitern überhaupt entstanden?


Drei-Welten-Theorie

Auf das Thema der Tonleitern bin ich über die Drei-Welten-Theorie nach Roger Penrose gestossen. Der Nobelpreisträger Penrose bewegt sich sowohl in der Mathematik wie der Physik. Doch  er denkt auch darüber nach, wie er nachdenkt.

Die drei Welten sind:

Selbstreferentialität und Logik

Das Nachdenken über das Nachdenken ist ein typsicher selbstreferentieller Prozess, der eine grosse Herausforderung für die Logik darstellt.

Das hat auch sehr viel mit unserem Selbstverständnis als Menschen zu tun und mit der Logik, mit der wir die Natur erklären. Auf dieser Website finden Sie weitere Beiträge genau zu diesen Themen.


Appendix

Reine und unreine Stimmung

Die zwei auseinanderstrebenden Ideale einer Theorie

Musiktheorie bewegt sich wie jede Theorie zwischen zwei Extremen. Einerseits erlaubt es eine Theorie, ganz verschiedene Beobachtungen zusammenzufassen und auf einfache Art zu erklären – je einfacher umso besser. Andererseits wollen wir die Erklärung aber auch anwenden, und zwar auf möglichst alles, was wir beobachten. Eine Theorie ist also dann gut, wenn sie möglichst einfach ist, andererseits aber auch möglichst alles erklärt.

Diese beiden Extremziele jeder guten Theorie gleichzeitig zu erfüllen ist die Herausforderung.

Typisch ist der Moment, wo bei der Anwendung der Theorie plötzlich eine Beobachtung auftaucht, die mit der Theorie nicht vereinbar ist. Solche Beobachtungen stürzen die Theorie in eine Krise, z.B. als Max Planck unerklärliche Unregelmässigkeiten in der Schwarzkörperstrahlung feststellte und so die Quantentheorie einleitete oder als Kurt Gödel  mit der Beobachtung einer Lücke in der Logik der Mengen (Unvollständigkeitssatz 1931) sowohl die Mengenlehre als auch die klassische Logik in eine schwere Krise stürzte.

Jede Theorie funktioniert solange gut, bis sie an ihre Grenzen kommt. Dann tauchen plötzlich Lücken auf.

Stimmt die reine Stimmung überhaupt?

Nun, die Krise, von der ich hier spreche, ist etwas älter als die von Max Planck und Kurt Gödel ausgelösten. Sie hat auch schon lange eine sehr praktische Lösung gefunden. Es handelte sich um eine Krise in der Musiktheorie, und die gefundene Lösung ist die gleichstufig temperierte Stimmung. Dies ist die Art, wie wir heute Musikinstrumente stimmen, aber es ist keine Selbstverständlichkeit.

Wie kam es dazu? Schon lange war bekannt, dass mathematische Gesetzmässigkeiten hinter den Intervallen stecken, die wir als wohlklingend empfinden. Tonleitern mit diesen durch einfache Brüche definierten Intervallen gelten als rein, auch unser Dur (ionisch) und alle anderen Kirchentonarten sind perfekt rein, sofern die Intervalle entsprechend den einfachen Brüchen gestimmt werden. Dann sind sie «rein».

Das funktioniert aber nur, wenn man in der gleichen Tonalität bleibt, d.h. wenn die Musik nicht den Grundton wechselt, d.h. nicht moduliert. In der Renaissance aber kamen die Komponisten zunehmend in Aufbruchstimmung und begannen zu modulieren, indem sie den Grundton (die Tonalität),  innerhalb des gleichen Musikstücks wechselten. Dabei wurden die Grenzen der reinen (=pythagoräischen) Stimmung evident.

Die Lücke im pythagoreischen Tonsystem

Als ich das erste Mal vom pythagoreischen Komma hörte, war ich sehr überrascht. Unser perfektes Tonsystem sollte eine – wenn auch klitzekleine – Lücke in der mathematisch perfekten Anordnung haben? Das Tonsystem besteht – wie jeder Blick auf eine Klaviertastatur zeigt – aus zwölf Halbtönen. Wenn ich die Halbtöne einen nach dem anderen nach oben gehe, kommt nach sieben Halbtönen die Quint und nach zwölf die Oktave. Wenn ich also zwölf Quinten (=12×7 Halbtöne) hochgehe, bin ich mathematisch gesehen am gleichen Ort, wie wenn ich sieben Oktaven (=7×12) hochgehe, nicht wahr?

Soweit die Mathematik, die mir als Kind sehr eingeleuchtet hat und ich war erstaunt, dass es nicht so sein sollte. In Wirklichkeit kommt man nach zwölf Quinten nämlich zu einem etwas höheren Ton als nach sieben Oktaven. 12×7 ist in diesem Fall nicht 7×12. Dieser Unterschied ist das pythagoreische Komma.

Woher kommt es? Die Ursache liegt – wie so oft – in einem unerwarteten exponentiellen Wachstum. Im Beitrag zum pythagoreischen Komma erkläre ich, wie und weshalb diese Lücke im pythagoreischen Tonsystem entsteht

 


Die ist ein Beitrag zur Entstehung der Tonleitern.


Die Wahrnehmung der Oktave mental

Dies ist ein Beitrag zur Entstehung der Tonleitern und setzt den Beitrag zur Resonanz der Oktave fort.


Die subjektive Seite

Die mathematische oder nach Penrose platonische Welt mit ihren einfachen Zahlenverhältnissen und die physikalische Welt mit ihren Resonanzphänomenen bringt uns die Oktave näher, erklärt aber noch nicht, weshalb dieses Intervall in allen Kulturen die Basis von allen Tonleitern ist. Dazu müssen wir auch die mentale Welt betrachten, das heisst die Welt unserer subjektiven Wahrnehmung.

Diese ist zwar allen zugänglich, doch es bleibt ihre eigene und subjektive Wahrnehmung. Ich kann nicht in Ihren Kopf sehen. Zwar können bildgebende Verfahren (MRI, PET) objektiv feststellen, welche Hirnareale wann aktiv sind, doch was auf diese Weise wahrnehmbar wird, ist der Blutfluss an einer bestimmten Stelle und nicht der Gedanke, wie Sie ihn erleben.

Happy Birthday

Die mentale Welt ist Ihre höchst persönliche Welt, doch für das Primat der Oktave trägt sie einiges bei. Wieder schlage ich ein kleines Experiment vor, zwar kein objektives wie im Vorbeitrag, doch ein durchaus nachvollziehbares. Der Vorteil ist: Mit grosser Wahrscheinlichkeit haben Sie es bereits schon mehrmals durchgeführt.

Es kann auch das Weihnachtslied im Familienkreis sein. Mehrere Menschen singen zusammen und wenn wir Glück haben, singen wir einstimmig. Das ist jedenfalls meistens unsere Absicht. Es funktioniert besser, wenn alle Sänger etwa die gleiche Stimmlage haben. Was aber, wenn Frauen und Männer und Kinder zusammen singen? Auch dann erkennen wir, wenn alle einstimmig zusammen sind. Wir singen zwar nicht die gleichen Frequenzen, sondern Frequenzen mit einer Oktave Abstand, merken das aber praktisch nicht. Der Abstand von einer Oktave klingt für uns als der gleiche Ton. Wenn ich als Bass neben dem Alt die tiefere Oktave nicht treffe, singe ich falsch, wenn ich sie treffe, singe ich richtig. Das ist die subjektive Wirkung der Oktave: Es ist der gleiche Ton.

Die Resonanz in der physikalischen Welt erleichtert dieses subjektive Zusammenfallen der Töne im Oktavabstand, und vermutlich unterstützen uns die Resonanzverhältnisse auf der Basilarmembran des Innenohrs darin, die beiden Frequenzen auch subjektiv in unserer mentalen Welt zusammenzubringen.

Erster und zweiter Oberton

Die Oktave als erster mathematisch-physikalisch möglicher Oberton unterscheidet sich in dieser Beziehung vom zweiten Oberton, der in der Tonleiter auf eine Quint fällt. Zur Verdeutlichung des mathematischen Bezugs zeige ich nochmals die Schwingungsverhältnisse von Grundton und den ersten Obertönen:

Abb. 1: Oktave und Quinte als Obertöne

Weshalb ist nun die Oktave das Merkmal der Einstimmigkeit und nicht die Quinte, obwohl beide mathematisch und physikalisch die engste Beziehung zum Grundton haben? Die Quinte ist zwar mathematisch gesehen etwas weiter weg vom Grundton als die Oktave, aber die Doppeloktave ist es noch weiter und trotzdem empfinden wir die Doppeloktave genau wie die Oktave mental als den «gleichen» Ton wie den Grundton.

In der mentalen Welt, also in unserem Erleben, unterscheiden sich Oktave und Quinte deutlich. In dieser Welt sind die Oktave (und alle Mehrfach-Oktaven) der «gleiche» Ton – die Quinte aber ist ein anderer Ton. Das ist überall auf der Welt so, in allen Kulturen. Weil ein Ton eine Oktave höher als der gleiche Ton empfunden wird, wiederholen sich die Tonleitern eine Oktave höher, und nicht etwa eine Quinte.

Ein Experiment zur Unterscheidung von Oktave und Quinte in der mentalen Welt

Das oben beschriebene Happy-Birthday Experiment kann erweitert werden und so auch den Unterschied zwischen Quinte und Oktave und die besondere Rolle der Oktave zeigen. Sänger können z.B. versuchen, bei der nächsten Geburtstags-Party den Song nicht eine Oktave tiefer (oder höher) zu singen, sondern eine Quinte. Das dürfte ziemlich schwierig für Sie sein, weil Sie eben nicht den «gleichen» Ton singen wie die anderen. Und falls Sie es schaffen, werden die anderen Sie verwundert ansehen, weil Sie eben die Quinte und «nicht den gleichen Ton» singen. Die Oktave ist der «gleiche» Ton, die Quinte ist es nicht.

Über den Zugang zur mentalen Welt

Die mentale Welt lässt sich bekanntlich schwierig beweisen, da sie völlig subjektiv ist. Obwohl jeder mit seinen Gedanken und Empfindungen dauernd in dieser Welt lebt, ist sie objektiver naturwissenschaftlicher Untersuchung nur indirekt zugänglich. Die Inhalte Ihres mentalen Erlebens können Sie anderen Menschen mitteilen, aber ganz sicher können Sie nie sein, dass die anderen sie auch gleich empfinden. Sie können nur hoffen, dass die anderen Ihr Erleben nachvollziehen können. Doch genau dieses subjektive Erleben und Nachvollziehen macht ja die Musik so interessant. Auf eine ganz besondere Weise teilen wir so unsere Subjektivität.

Fazit

Wir sehen, wie sich genau bei der Oktave die mathematische, die physikalische und die mentale Welt treffen. Die einheitliche Bedeutung der Oktave in allen Musikkulturen der Erde ist nur unter Einbezug aller drei Welten verstehbar.


In der Fortsetzung geht es um die weiteren Töne der Tonleitern. Können diese auch so einfach wie die Oktave erklärt werden?


Dies ist ein Beitrag zur Entstehung der Tonleitern


 

Resonanz und Oktave

Dies ist ein Beitrag zur Entstehung der Tonleitern und setzt den Beitrag zur Oktave fort.

Wir erzeugen eine Resonanz

Falls Resonanz für Sie ein abstraktes – oder noch kein erlebtes musikalisches – Phänomen ist, empfehle ich Ihnen folgendes einfaches Experiment: Suchen sie ein Klavier (kein digitales) und auf dem Klavier einen Ton, den Sie gut singen können. Drücken Sie die Taste mit diesem Ton und singen Sie ihn. Das setzt natürlich schon die Resonanz in ihrem Innenohr voraus, sonst würden Sie den Ton nicht treffen. Als nächstes drücken Sie die Klaviertaste, aber so, dass kein Ton erklingt und halten Sie die stumme Taste nach unten gedrückt. So kann die Saite frei schwingen. Jetzt singen Sie den Ton wieder. Wenn Sie die Tonhöhe der Taste erwischt haben, dann erklingt jetzt der Ton im Klavier, ohne dass Sie die Taste erneut anschlagen. Am besten funktioniert das, wenn das Klavier offen ist, und Sie die Saiten sehen können. Aber auch bei geschlossenem Klavierdeckel funktioniert es, Sie müssen eventuell nur ein bisschen lauter singen. Sie können nun verschiedene Töne singen, z.B. eine kleine Melodie und erkennen, dass der Ton im Klavier genau dann erklingt, wenn Ihre Stimme die gleiche Tonhöhe hat wie die Taste.

Falls Sie Mühe haben, den Ton zu treffen, geht es noch einfacher. Drücken Sie auf dem Klavier das Pedal ganz rechts. Jetzt können alle Saiten frei schwingen. Rufen Sie jetzt laut auf das Klavier ein, am besten bei offenem Deckel. Wieder hören Sie, wie die Saiten schwingen, als Echo auf ihre Stimme.

Einfache Resonanz

Die «Fernwirkung» im obigen Experiment ist keine Hexerei, sondern durch Schallwellen vermittelt. Diese treten mit der Saite in Resonanz. Das typische daran ist, dass die Resonanz nicht bei jeder Frequenz auftritt, sondern genau dann, wenn die Schallwelle die Eigenfrequenz der Saite trifft. Eigenfrequenzen sind Eigenschaften von vielen physikalischen Systemen, z.B. kann auch eine Brücke eine Eigenfrequenz haben oder ein Glas, ein Stück Holz oder ein Topf. Saiten- und Blasinstrumente sind dahingehend perfektioniert, dass sie besonders gut klingen, d.h. dass ihre Eigenfrequenzen besonders kräftig und klangvoll sind.

Resonanzen höheren Grades

Wieder schlage ich ein kleines Experiment vor und wieder benötigen Sie ein Klavier, diesmal sollte es gestimmt sein.

Abb 1: Zwei C’s auf dem Klavier im Abstand einer Oktave

Drücken Sie nun die Taste C auf dem Klavier, und zwar die obere (rechte) Taste C. Auf dem Klavier hat es natürlich viele von diesen C’s, nehmen Sie am besten zwei benachbarte C’s in der Mitte der Tastatur, dort ist das Experiment am deutlichsten zu hören. Sie können auch andere Töne als C’s nehmen, das Experiment funktioniert mit allen Tönen, Voraussetzung ist allerdings, dass der Abstand zwischen den beiden Tönen genau eine Oktave ist. Sie erkennen jetzt auch, woher die Oktave ihren Namen hat, das obere C ist acht (lateinisch: octo) Töne vom unteren entfernt (bei der Zählung wird für die musikalischen Intervalle der Ausgangston immer mitgezählt).

Sie haben jetzt die obere (rechte) C-Taste stumm nach unten gedrückt. Schlagen sie jetzt die untere C-Taste kurz und kräftig an. Sie hören jetzt wieder eine «Fernwirkung». Offensichtlich ist die Saite des oberen C’s durch den Anschlag des unteren in Schwingung geraten. Schlagen Sie nun eine Taste gleich links oder rechts neben dem unteren C an. Bei diesen Tasten können Sie das obere C nicht zum Klingen bringen, es entsteht keine Resonanz.

Weshalb genau bei einer Oktave eine Resonanz entsteht

Grundton und Obertöne

Abb. 2:  Mögliche Schwingungen einer Saite
In Abb. 2 sehen Sie fünf mögliche Schwingungsmuster für eine gespannte Seite. Unten (bei 1) schwingt die Saite mit genau einem Bauch in der Mitte. Bei 2 hat es zwei Bäuche, bei 5 fünf. Gelb ist die schwingende Saite gezeichnet, der schwarze Strich zeigt die korrespondierende Schallwelle, d.h. die Schallwelle (Wanderwelle), welche die gleiche Frequenz hat wie die stehende Welle, welche die klingende Saite darstellt. Diese Frequenz hat die Wellenlänge λ, ist also doppelt so lang wie die Saite.

Der Zustand 1 ist nun der Grundzustand, d.h. der Ton, der im oben vorgeschlagenen Experiment erklingt, wenn Sie eine Klaviertaste drücken. Der Zustand 2 ist der nächste erlaubte Zustand der Schwingung. Hier schwingt die Saite mit zwei Bäuchen, bei 3 sind es drei, etc. Alle Zustände also, bei denen die Saite an den Enden, an denen sie befestigt ist, nicht ausschwingt, sind Zustände, die ein ungehindertes Schwingen der Saite erlauben. Somit ist nicht nur der Zustand der einfachen Saitenschwingung möglich, sondern im Prinzip jeder, der einer Wellenlänge entspricht, die ganzzahlig in die Saitenlänge passt. Bei Zustand 2 ist die Wellenlänge halb so lang wie im Grundzustand und die Frequenz somit doppelt so gross (schnell,hoch). Zustand 2 entspricht mit seiner doppelt so grossen Frequenz dem Ton, der eine Oktave höher klingt, Zustand 4 dem Ton, der zwei Oktaven höher klingt.

Weshalb nun klingt das höhere C nun mit, wenn Sie, wie im Experiment oben vorgeschlagen, das tiefere C anschlagen? – Der Grund liegt darin, dass die Saite des tiefen C’s – wie jede Saite – nicht nur in der Grundschwingung (Zustand 1 in Abb. 2) erklingt, sondern mehr oder weniger in allen erlaubten Schwingungen. Diese Schwingungen überlagern sich also. Wenn nun die von der tieferen Saite ausgehenden Schallwellen die Saite des höheren C’s erreichen, dann enthalten sie neben der Grundschwingung immer etwas leiser auch die höheren Schwingungen und somit genau auch die Schwingung der Saite des höheren C’s. Einer Resonanz steht dadurch nichts mehr im Weg.

Sinusschwingung und Obertöne

Die schwarzen Kurve in Abb. 2 sind mathematisch gesehen Sinuskurven. Mit einem technischen Gerät ist es möglich, solche Kurven akustisch zu erzeugen, man spricht dann von einem Sinusschwingung. Mit natürlichen Klangkörpern, also der Klaviersaite, Ihrer Stimme oder überall sonst in der Natur kommen solche reinen Sinusschwingungen nicht vor, sondern die so erzeugten Schallwellen enthalten immer auch die höheren Schwingungen (Stufen 2 ff. in Abb. 2) in komplexen Überlagerungen mit. Man spricht von Obertönen. Die Anteile der einzelnen Obertöne, d.h. wie viel von den Schwingungen der Stufen 2 und folgende jeweils neben dem Grundton in der Mischung des Klangs mitschwingt, ist sehr variabel und wird von den physikalischen Eigenschaften des klangerzeugenden Mediums bestimmt. Diese Mischungen machen den Charakter des Klangs des jeweiligen Instruments aus.


Interpretation der Saitenschwingungen in den drei Welten

Platonisch → Physikalisch (Von einfach zu komplex)

Wir sehen am Beispiel der schwingenden Saite, wie mathematische Gesetzmässigkeiten aus der  platonischen Welt die physikalische Welt bestimmen. In der physikalischen Welt kommen sie aber sehr verschieden an und es entsteht eine grosse Vielfalt: Auf der Saite entstehen gleichzeitig mehrere Schwingungen, neben dem Grundton entstehen immer gleichzeitig viele Obertöne. Jede einzelne dieser Schwingungen kann mathematisch sehr einfach beschrieben werden. Die Mischung jedoch ist äusserst komplex.

Was mathematisch, d.h. in der abstrakten platonischen Welt sehr einfach ist, wird schnell komplex, sobald es in der physikalischen Welt wirkt.

Die unendliche Treppe in Penrose und «Anti-Penrose»-Richtung

Die Trichter in der Skizze von Penrose stellen m.E. nur eine Richtung der Verhältnisse dar. Penrose betont in seiner Darstellung, dass nicht die ganze Mathematik gebraucht wird, um die Physik zu beschreiben und kommt so zu Mengenverhältnissen, wie sie in der Skizze mit den Trichtern dargestellt sind und die wie die ewige Treppe der Logik zu widersprechen scheinen.

Doch meines Erachtens können die Trichter auch in der Gegenrichtung gesehen werden, dann wenn man die Informationsmenge betrachtet. Diese ist in der physikalischen Welt grösser als in der platonischen. Beim Eintreten der Mathematik in die Physik entsteht Neues, nämlich die komplexe Vielfalt der Mischungsverhältnisse. Diese konkrete Vielfalt in der physikalischen Welt stellt eine Information dar, die weit über die Information der ursprünglichen mathematischen Welt hinausgeht. Die Informationsmenge nimmt in Richtung von platonisch zu physikalisch zu. Das stellt mengenmässig eine Gegenbewegung zum Trichter von Penrose dar. Die unendliche Treppe der drei Welten verliert so bei näherem Hinsehen etwas von ihrem Paradoxie-Schrecken.

Platonisch → Mental

Vermutlich haben Sie schon technisch erzeugte Sinusschwingungen gehört. Sie standen am Anfang der elektronischen Musik und hatten damals den Reiz des Neuen und Technischen. Gerade ihre nackte Reinheit war beeindruckend. Allerdings sind diese Töne sind sehr schnell auch sehr langweilig. Die Reinheit und die sterile Banalität dieser technischen Klänge ist verursacht durch das fehlende Mitschwingen der Obertöne. Die reichhaltigen Informationen dieser Zusatzschwingungen nehmen wir als Hörer wahr und sie machen den Reichtum der natürlichen Klänge aus. Ich möchte nicht auf sie verzichten.


In einem Fortsetzungsbeitrag möchte ich erklären, weshalb die Oktave in der mentalen Welt so wichtig ist und was das dazu beiträgt, dass die Tonleitern in allen Kulturen stets die Oktave als Basis haben.


Dies ist ein Beitrag zur Entstehung der Tonleitern


 

Die Oktave

Eine bemerkenswerte Gemeinsamkeit

Alle Tonleitern, die ich kenne, bewegen sich im Bereich einer Oktave. Auch Tonleitern, die für uns Europäer ungewöhnlich klingen, arabische, indische, japanische und afrikanische bewegen sich innerhalb genau einer Oktave, d.h. ihr tiefster und ihr höchster Ton haben den Abstand von genau einer Oktave, was für eine Tonart das auch ist.

Ich finde das äusserst bemerkenswert. Das ist so, als ob alle Sprachen der Welt, die ja sehr unterschiedliche Wörter haben, für einen bestimmten Begriff das gleiche Wort verwenden würden, und zwar schon immer und ganz unabhängig voneinander. Woher kommt das?

Die Drei-Welten-Theorie kann nun diese ungewöhnliche Gemeinsamkeit der Tonarten aller menschlichen Kulturen plausibel erklären.

Die Oktave platonisch

Wenn Sie eine Saite auf einer Geige zupfen, erhalten Sie einen Ton. Wenn Sie nun den Finger genau in der Mitte der Saite auf das Griffbrett drücken und dann zupfen, erklingt die Saite eine Oktave höher. Das gleiche gilt für Pfeifen. Eine Pfeife, die halb so lang ist wie eine andere, klingt eine Oktave höher. Offensichtlich liegt der Oktave ein Verhältnis 1:2 zugrunde. Das ist die platonische, d.h. mathematische Seite der Oktave. Einfache mathematischen Verhältnisse (= Brüche) spielen auch bei anderen Intervallen eine Rolle, worauf wir noch kommen werden.

Diese mathematischen Verhältnisse der Verhältnisse zwischen den Tönen – das heisst der Intervalle – sind schon lange bekannt und wurden vom Griechen Pythagoras gelehrt, der vor Sokrates und Platon eine einflussreiche Schule in Süditalien begründete.

Abb. 1: Eine schwingende Saite. Oben ist die Saite links und rechts (0 und 1) befestigt, kann dort also nicht schwingen. Je weiter weg von der Befestigung, umso stärker schwingt sie aus, am meisten in der Mitte. Unten ist in der Mitte ein Finger auf die Seite gedrückt, und sie schwingt nun in der halben Länge und eine Oktave höher. (Mit diesen Beschreibungen sind wir aber von der platonischen bereits in die physikalischen Welt eingetreten).

Das einfaches Zahlenverhältnis erklärt die Einzigartigkeit des gemeinsamen Merkmals Oktave über alle menschlichen Kulturen noch nicht. Weshalb spielt das Zahlenverhältnis für die Tonleitern überhaupt eine Rolle?

Zur Erklärung müssen wir die beiden anderen Welten ansehen, nämlich die physikalische, in der Töne erklingen, und die mentale, in der wir sie wahrnehmen.

Die Oktave physikalisch

Töne

Töne sind materielle Schwingungen in einem Trägermedium, z.B. Luft. Ein Ton enthält ist in der Regel eine Überlagerung von mehreren Schwingungen (Grundton plus Obertöne). An dieser Stelle schauen wir aber nur die Grundschwingung an, die die erkennbare Tonhöhe bestimmt.

Diese Grundschwingung ist eine Sinuskurve und die Tonhöhe wird als Frequenz angegeben, z.B. 440 Hz. Diese Frequenz bedeutet, dass die Sinuskurve 440 mal pro Sekunde hin und her schwingt. Das gleiche tut auch die Saite.

Die Saite schwingt an Ort, man spricht von einer stehenden Welle (siehe Abb. 1 oben). Die Schwingung in der Luft hingegen bewegt sich vom Ort fort (Wanderwelle). Durch ihre stationären Schwingung kann die Saite die Luft bewegen und führt so zu einer Schwingung in der Luft, einer Schallwelle. Dabei überträgt die Saite die Eigenschaften ihrer Schwingung, insbesondere deren Frequenz, auf die Schallwelle.

Die Wellenlänge in einer Wanderwelle, also einer Schallwelle, aber auch z.B. einer Welle auf der Wasseroberfläche ist der Abstand der Wellenbäuche (oder Wellenkämme)  voneinander. Bei einer stehenden Welle, also der Saite in Abb. 1 ist die Wellenlänge gleich der (doppelten) Länge der schwingenden Saite.

Wenn nun die Geschwindigkeit der Wanderwelle konstant ist, dann müssen mehr Wellenbäuche hintereinander kommen, je kürzer die Abstände zwischen ihnen sind. Die Abstände zwischen den Wellenkämmen entsprechen der Wellenlänge, die Zahl der Kämme pro Zeit der Frequenz der Welle. Je mehr Kämme an einem Ort durchlaufen, umso kleiner sind ihre Abstände.

Zwischen der Wellenlänge und ihrer Frequenz besteht somit ein umgekehrt proportionales Verhältnis, d.h. je kürzer die Wellenlänge umso höher muss die Frequenz sein. Deshalb schwingt die halb so lange Saite doppelt so schnell. Das ist der physikalische Ursprung der Oktave.

Tonentstehung

Wie kommt nun die Schwingung in die Saite? Dies rührt daher, dass eine gespannte Saite eine Tendenz zu einer Eigenschwingung hat, Die Spannung der Saite führt dazu, dass ein Anstoss, z.B. ein Zupfen der Saite, in ihr eine Bewegung auslöst, die an den beiden Enden der Saite nicht aufhört, sondern wieder zurück gestossen wird. Auf diese Weise bildet sich die stehende Welle aus. Die Wellenlänge, also der Abstand der Wellenbäuche, wird dabei von der Länge der Saite bestimmt. Der Grund dafür ist, dass an den beiden Enden der Saite keine Bewegung mehr möglich ist, da sie ja dort fest fixiert ist. Ausschwingen kann die Welle nur dazuwischen. Die Wellenlänge muss also genau in die Länge der Saite passen.

Die Oktave mental

Das Innenohr

Wir nehmen Töne mit unseren beiden Innenohren wahr. Diese sind äusserst raffiniert gebaute Organe mit einer schneckenförmigen Struktur, weshalb man auch von der Hörschnecke spricht. Die Schallwelle durchwandert von aussen her die flüssigkeitsgefüllte Hörschnecke und erzeugt durch Resonanz eine Schwingung der sogenannten Basilarmembran, welche  die gesamte Schnecke durchzieht. Entlang der Basilarmembran nehmen sogenannte Haarzellen die Schwingungen der Basilarmembran auf und leiten sie als elektrische Signale nach innen ins Hirn. Durch den komplexen und raffinierten Bau der Schnecke, der hier nur kursorisch beschrieben ist, können die akustischen Signale analytisch zerlegt werden, sodass je nach Frequenz unterschiedliche Haarzellen angeregt werden, je höher die Frequenz umso näher am Eingang der Schnecke, je tiefer umso mehr im Innern.

Die Tonwahrnehmung mental

Bis hier hat die Beschreibung der Tonwahrnehmung über das Innenohr noch nichts mit der mentalen Welt zu tun, es handelt sich nur um die anatomischen Voraussetzungen, d.h. den physikalischen Apparat, der die physikalischen Signale (die Schallwellen) gezielt für die eigentliche Wahrnehmung vorbereitet. Diese findet im Gehirn statt und ist ein subjektiver Vorgang.

Subjektive Vorgänge zeichnen sich dadurch aus, dass sie nicht von aussen nachvollzogen werden können. Wie Sie etwas hören und empfinden, weiss ich nicht, das ist ganz Ihre Welt. Allerdings haben wir als Menschen so viele Gemeinsamkeiten, dass ich in davon ausgehen kann, dass Sie vieles ganz ähnlich erleben wie ich. Wir haben die gleiche Anatomie und die gleichen Lebensbedingungen. Weshalb empfinden viele Menschen die gleiche Musik als schön? Wenn wir von der gleichen Musik gerührt werden, sie gleich wie andere als fröhlich, traurig, tröstend, mitreissend usw. empfinden, zeigt das, dass unsere mentalen Welten trotz ihrer Subjektivität stark verbunden sind.

Dabei spielen kulturelle Aspekte – also gelernte Gewohnheiten – eine ganz wichtige Rolle. Auch die Kultur gehört letztlich in die mentale Welt, sie ist der Geist, d.h. die Subjektivität, die wir teilen. Diese Subjektivität, die individuelle wie die kollektive, fusst aber auch auf den physikalischen Voraussetzungen.

Somit sind wir wieder bei unserem Thema: Weshalb haben alle Kulturen der Menschen die Oktave in ihren sonst so verschiedenen Tonleitern?

Der Grund ist physikalisch erklärbar und liegt in der Resonanz.

Die Resonanz

Resonanz ist eine Voraussetzung, dass die Töne im Innenohr überhaupt ankommen. Denn die Basilarmembran im Innenohr übernimmt die Schwingungen der Schallwellen auf eine ganz bestimmte Weise. Nicht alle Frequenzen finden auf der Basilarmembran die gleiche Resonanz. Das Innenohr ist so gebaut, dass die Basilarmembran am Eingang mit hohen Frequenzen in Resonanz gerät und in der Tiefe mit tiefen. So analysiert das Ohr die verschiedenen Tonhöhen. Aber die Resonanz ist noch für viel mehr verantwortlich, u.a. auch dafür, dass in den tausenden unterschiedlichen Tonleitern die Oktave immer vorkommt. Dieser auffällige Beobachtung werden wir im Fortsetzungsbeitag verfolgen.


Dies ist ein Beitrag zur Entstehung der Tonleitern