Archiv der Kategorie: Künstliche Intelligenz

Übersicht über die KI-Systeme

Alle bis jetzt untersuchten Systeme, inkl. Deep Learning, lassen sich in ihrem Kern auf zwei Methoden zurückführen, die regel- und die korpusbasierte. Dies gilt auch für die bisher nicht besprochenen Systeme, nämlich den einfachen Automaten und die hybriden Systeme. Letztere kombinieren die beiden Herangehensweisen.

Wenn wir diese Varianten integrieren, gelangen wir zur folgenden Übersicht:

A: Regelbasierte Systeme

Regelbasierte Systeme basieren auf Rechenregeln. Bei diesen Regeln handelt es sich immer um ‹IF-THEN› Befehle, also um Anweisungen, die einem bestimmten Input ein bestimmtes Ergebnis zuweisen. Diese Systeme sind immer deterministisch, d.h. ein bestimmter Input führt immer zum gleichen Resultat. Ebenfalls sind diese Systeme immer explizit, d.h. es gibt keine Vorgänge, die nicht sichtbar gemacht werden können und das System ist – mindestens im Prinzip – immer vollständig durchschaubar. Regelbasierte Systeme können allerdings recht komplex werden.

A1: Einfacher Automat (Typ Taschenrechner)
Einfacher Automat
Abb. 1: Einfacher Automat

Regeln werden auch als Algorithmen («Algo» in Abb. 1) bezeichnet. Selbstverständlich können mit einfachen Automaten auch sehr komplexe Berechnungen durchgeführt werden und Input und Output (Resultat) müssen nicht Zahlen sein. Der einfache Automat zeichnet sich vor den anderen Systemen dadurch aus, dass er keine spezielle Wissensbasis und keinen Korpus braucht, sondern mit wenigen Rechenregeln auskommt.

Vielleicht würden Sie den Taschenrechner nicht als KI-System bezeichnen, doch die Unterschiede zu den höher entwickelten Systemen bis hin zum Deep Learning sind nur gradueller Natur – bzw. von genau der Art, wie sie hier auf dieser Seite beschrieben werden. Komplexe Rechenleistungen erscheinen uns schnell einmal als intelligent, besonders dann, wenn wir sie mit unseren menschlichen Gehirnen nicht so einfach nachvollziehen können. Das gilt bereits für einfache Rechenoperationen wie Divisionen und Wurzelziehen, bei denen wir schnell an unsere Grenzen stossen. Gesichtserkennung erscheint uns hingegen vergleichsweise einfach, weil wir das meist auch ohne Computer ganz gut können. Übrigens gehört Mühlespielen auch in die Kategorie A1, es braucht zwar eine gewisse Intelligenz, um es zu spielen, aber es ist vollständig und einfach mit einem KI-Programm vom Typ A1 beherrschbar.

A2: Wissensbasiertes System
Erstellen Wissensbasis
Abb. 2: Erstellen einer Wissensbasis

Diese Systeme unterscheiden sich von einfachen Automaten dadurch, dass ein Teil ihrer Regeln in einer Wissensbasis ausgelagert ist. Abb. 2 weist darauf hin, dass diese Wissensbasis von einem Menschen aufgebaut wird; Abb. 3 zeigt, wie sie angewendet wird. Die Intelligenz steckt in den Regeln, sie kommt vom Menschen – bei der Anwendung reicht dann die Wissensbasis allein.

Anwenden eines wissensbasierten Systems
Abb. 3: Anwenden eines wissensbasierten Systems

Die Inferenzmaschine («IM» in Abb. 2 und 3) entspricht den Algorithmen der einfachen Automaten in Abb. 1. Im Prinzip handelt es sich bei den Algorithmen, der Inferenzmaschine und den Regeln der Wissensbasen immer um Regeln, also um explizite ‹IF-THEN›- Anweisungen. Diese können allerdings unterschiedlich komplex verwoben und verschachtelt sein. Sie können sich auf Zahlen oder auf Begriffe beziehen.

Die Regeln in der Wissensbasis sind nun den Regeln der Inferenzmaschine untergeordnet. Letztere kontrollieren den Fluss der Interpretation, d.h. sie entscheiden, welche Regeln der Wissensbasis anzuwenden und wie sie auszuführen sind. Die Regeln der Inferenzmaschine sind das eigentliche Programm, das vom Computer gelesen und ausgeführt wird. Die Regeln der Wissensbasis hingegen werden vom Computer nicht direkt, sondern indirekt über die Anweisungen der Inferenzmaschine ausgeführt. Es handelt sich also um eine Verschachtelung – wie sie im Übrigen typisch für die Befehle (Software) in einem Computer sind. Auch die Regeln der Inferenzmaschine werden ja nicht direkt ausgeführt, sondern von tieferen Regeln gelesen, bis hinunter zur Maschinensprache im Kern (Kernel) des Rechners. Im Prinzip sind aber die Regeln der Wissensbasis genauso Rechenregeln wie die Regeln der Inferenzmaschine, nur eben in einer ‹höheren› Programmiersprache. Diese zeichnet sich vorteilhafterweise dadurch aus, dass sie für die Domain-Experten, d.h. für die menschlichen Fachexperten, besonders einfach und sicher les- und handhabbar ist.

Bezüglich des in der Inferenzmaschine verwendeten Logiksystems unterscheiden wir regelbasierte Systeme

– mit statischer Logik (Typ Ontologien / Semantic Web),
– mit dynamischer Logik (Typ Begriffsmoleküle).

Siehe dazu den Beitrag ‹Die drei Neuerung der regelbasierte KI›.

B: Korpusbasierte Systeme

Korpusbasierte Systeme werden in drei Schritten erstellt (Abb. 4). Im ersten Schritt wird ein möglichst grosser Korpus gesammelt. Die Sammlung enthält keine Regeln, sondern Daten. Regeln wären Anweisungen, die Daten des Korpus hingegen sind keine Anweisungen; es handelt sich um reine Datensammlungen, Texte, Bilder, Spielverläufe, etc.

Erstellen eines korpusbasierten Systems
Abb. 4: Erstellen eines korpusbasierten Systems

Diese Daten müssen nun – im zweiten Schritt – bewertet werden. In der Regel macht das ein Mensch.

Im dritten Schritt wird ein sogenanntes neuronales Netz auf Basis des bewerteten Korpus trainiert. Das neuronale Netz ist im Gegensatz zum Datenkorpus wieder eine Regelsammlung, wie es die Wissensbasis der regelbasierten Systeme (Typ A) ist. Im Unterschied zu diesen wird das neuronale Netz aber nicht von einem Menschen trainiert, sondern vom bewerteten Korpus. Das neuronale Netz ist – im Gegensatz zur Wissensbasis – nicht explizit, d.h. nicht so ohne Weiteres einsehbar.

Anwenden eines korpusbasierten Systems
Abb. 5: Anwenden eines korpusbasierten Systems

Bei der Anwendung kommt das neuronale Netz wie das regelbasierte nun ganz ohne Menschen aus. Es braucht nicht einmal mehr den Korpus. Alles Wissen steckt in den Algorithmen des neuronalen Netzes. Zudem ist das neuronale Netz durchaus in der Lage, auch schlecht strukturierten Inhalt, z.B. Pixelhaufen (Bilder) zu interpretieren, bei denen regelbasierte Systeme (Typ B) ganz schnell an ihre Grenzen stossen. Im Gegensatz zu diesen sind die korpusbasierten Systeme aber weniger erfolgreich, was komplexen Output betrifft, d.h. die Zahl der möglichen Output-Resultate darf nicht zu gross sein, da sonst die Trefferschärfe des Systems leidet. Am besten geeignet sind binäre Outputs vom Typ ‹eigener/fremder Panzer› (siehe Vorbeitrag) oder ‹männlicher/weiblicher Autor› bei der Bewertung von Twitter-Texten.

Drei Untertypen der korpusbasierten KI

Die drei Untertypen unterscheiden sich dadurch, wer die Bewertung des Korpus durchführt.

Die drei Typen der korpusbasierten Systeme

Abb. 6: Die drei Typen der korpusbasierten Systeme

B1: Typ Mustererkennung

Diesen Typ (oberes System in Abb. 6) habe ich im «Panzerbeispiel» beschrieben. Die Bewertung des Korpus erfolgt dabei durch einen menschlichen Experten.

B2: Typ Suchmaschine

Siehe mittleres Schema in Abb. 6. Bei diesem Typ erfolgt die Bewertung des Korpus durch die Kunden. Ein solches System ist im Beitrag Suchmaschine beschrieben.

B3: Typ Deep Learning

Bei diesem Typ (unterstes System in Abb. 6) ist im Gegensatz zu den oberen kein Mensch nötig, um das neuronale Netz zu bewerten. Die Bewertung ergibt sich allein durch den Spielverlauf. Dass Deep Learning aber nur unter sehr restriktiven Bedingungen möglich ist, wird im Beitrag Spiele und Intelligenz erläutert.

C: Hybride Systeme

Selbstverständlich können die oben genannten Methoden (A1 und A2, B1 bis B3) in der Praxis auch verbunden werden.

So kann z.B. ein System zur Gesichtsidentifikation so funktionieren, dass ein korpusbasiertes System des Typs B1 in den Bildern einer Überwachungskamera Gesichter als solche erkennt und in den Gesichtern die entscheidenden Formen von Augen, Mund usw. Anschliessend errechnet ein regelbasiertes System des Typs A2 aus den von System  B1 markierten Punkten die Grössenverhältnisse von Augen, Nasen, Mund etc., die ein individuelles Gesicht auszeichnen. Durch eine solche Kombination von korpus- und regelbasiertem System können auf den Bildern individuelle Gesichter erkannt werden. Der erste Schritt wäre für ein System A2 nicht möglich, der zweite Schritt für ein System B1 viel zu kompliziert und ungenau. Ein Hybrid macht es möglich.


Im Folgebeitrag beantworte ich die Frage, wo in all diesen Systemen nun die Intelligenz steckt. Aber vermutlich haben Sie die Antwort längst selbst erkannt.


Dies ist ein Beitrag zum Thema künstliche Intelligenz.

Spiele und Intelligenz (2): Deep Learning

Go und Schach

Das asiatische Go-Spiel hat viele Ähnlichkeiten mit Schach und ist dabei gleichzeitig einfacher und raffinierter. Das heisst:

Gleich wie Schach:
– Brettspiel → klar definiertes Spielfeld
– Zwei Spieler (mehr würde die Komplexität sofort erhöhen)
– Eindeutig definierte Spielmöglichkeiten der Figuren (klare Regeln)
– Die Spieler ziehen abwechselnd (klare Zeitschiene)
– Keine versteckten Informationen (wie etwa beim Jassen)
Klares Ziel (Wer am Schluss das grössere Gebiet besetzt, gewinnt)

Bei Go einfacher:
– Nur ein Typus Spielfigur/Steine (Bei Schach: König, Dame, etc.)

Bei Go komplexer/aufwendiger:
– Go hat das leicht grössere Spielfeld.
– Die grössere Anzahl Felder und Steine führt zu etwas mehr Rechenaufwand.
– Trotz sehr einfachen Grundelementen hat Go eine ausgesprochen raffinierte Spielanlage.

Zusammenfassung

Die Unterschiede zwischen Go und Schach sind verglichen mit den Gemeinsamkeiten minimal. Insbesondere sind auch für Go die stark einschränkenden Vorbedingungen a) bis d)  erfüllt, die es einem Algorithmus erlauben, die Aufgabe in Angriff zu nehmen:

a) klar definiertes Spielfeld
b) klar definierte Spielregeln
c) klar definierter Spielablauf
d) klares Spielziel

(siehe auch Vorbeitrag)

Go und Deep Learning

Google hat die besten menschlichen Go-Spieler besiegt. Der Sieg wurde durch einen Typus KI erreicht, der als Deep Learning bezeichnet wird. Manche Leute denken, dass damit sei bewiesen, dass ein Computer – d.h. eine Maschine – wirklich intelligent sein könne. Schauen wir deshalb genauer, wie Google das angestellt hat.

Regel- oder korpusbasiert – oder ein neues, drittes System?

Die Strategien der bekannten KI-Programme sind entweder regel- oder korpusbasiert. In den Vorbeiträgen haben wir uns gefragt, wo die Intelligenz bei diesen beiden Strategien herkommt und wir haben gesehen, dass die Intelligenz bei der regelbasierten KI von menschlichen Experten in das System hinein gegeben wird, indem sie die Regeln bauen. Bei der korpusbasierten KI sind ebenfalls Menschen nötig, denn alle Einträge in den Korpus müssen eine Bewertung (z.B. eigener/fremder Panzer) bekommen, und diese Bewertung lässt sich immer auf Menschen zurückführen, auch wenn das nicht immer sofort ersichtlich ist.

Wie aber sieht das nun bei Deep Learning aus? Offensichtlich sind hier keine Menschen mehr nötig, um konkrete Bewertungen – bei Go bezüglich der Siegeschancen der Spielzüge – abzugeben, sondern es reicht, dass das Programm gegen sich selber spielt und dabei selbstständig herausfindet, welche Züge die erfolgreichsten waren. Dabei ist Deep Learning NICHT auf menschliche Intelligenz angewiesen und erweist sich – bei Schach und Go – sogar der menschlichen Intelligenz überlegen. Wie funktioniert das?

Deep Learning ist korpusbasiert

Zweifellos haben die Ingenieure von Google einen phantastischen Job gemacht. Während bei konventionellen korpusbasierten Anwendungen die Daten des Korpus mühsam zusammengesucht werden müssen, ist das beim Go-Programm ganz einfach: Die Ingenieure lassen den Computer einfach gegen sich selber spielen und jedes Spiel ist ein Eintrag im Korpus. Es müssen nicht mehr mühsam Daten im Internet oder anderswo gesucht werden, sondern der Computer kann den Korpus sehr einfach und schnell in beliebiger Grösse selber generieren. Das Deep Learning für Go bleibt zwar wie die Programme zu Mustererkennung weiterhin auf einen Korpus angewiesen, doch dieser lässt sich sehr viel einfacher – und vor allem automatisch – zusammenstellen.

Doch es kommt für das Deep Learning noch besser: Neben der einfacheren Erstellung des Korpus gibt es einen weiteren Vorteil: Es braucht überhaupt keine menschlichen Experten mehr, um unter den vielen zu einem bestimmten Zeitpunkt möglichen Spielzügen den besten herauszufinden. Wie funktioniert das? Wie kann Deep Learning ganz ohne menschliche Intelligenz intelligente Schlüsse ziehen? Das ist schon erstaunlich. Bei näherem Hinsehen wird aber klar, weshalb das in der Tat so ist.

Die Bewertung der Korpuseinträge

Der Unterschied liegt in der Bewertung der Korpuseinträge. Sehen wir dazu noch einmal unser Panzerbeispiel an. Sein Korpus besteht aus Bildern von Panzern, und ein menschlicher Experte muss jedes Bild danach beurteilen, ob es einen eigenen oder fremden Panzer darstellt. Dazu braucht es – wie dargestellt – menschliche Experten. Auch bei unserem zweiten Beispiel, der Suchmaschine, beurteilen menschliche Anwender, nämlich die Kunden, ob der im Korpus vorgeschlagene Link auf eine Website zum eingegebenen Suchausdruck passt. Beide Arten von KI kommen nicht ohne menschliche Intelligenz aus.

Bei Deep Learning ist das jedoch wirklich anders. Hier braucht es keine zusätzliche Intelligenz, um den Korpus, d.h. die einzelnen Züge der vielen Spielverläufe, die bei den Go-Testspielen entstehen, zu bewerten. Die Bewertung ergibt sich automatisch aus dem Spiel selber, denn es kommt nur darauf an, ob das Spiel gewonnen wird oder nicht. Das weiss der Korpus aber selber, da er ja den ganzen Spielverlauf bis zum Schluss hin registriert hat. Jeder Spielverlauf im Korpus hat somit seine Bewertung automatisch mit dabei – eine Bewertung durch Menschen erübrigt sich.

Natürliche Grenzen des Deep Learning

Durch das oben Gesagte lassen sich aber auch die Bedingungen erkennen, unter denen Deep Learning überhaupt möglich ist: Damit Spielverlauf und Bewertung klar sind, dürfen keine Überraschungen auftreten. Mehrdeutige Situationen und unkontrollierbare Einflüsse von aussen sind verboten. Damit alles fehlerfrei kalkulierbar bleibt, braucht es zwingend:

1. Ein geschlossenes System

Dies ist durch die Eigenschaften a) bis c) (siehe Vorbeitrag) gegeben, die Spiele wie Schach und Go aufweisen, nämlich:

a) klar definiertes Spielfeld,
b) klar definierte Spielregeln,
c) klar definierter Spielablauf.

Ein geschlossenes System ist nötig, damit Deep Learning funktionieren kann. Ein solches kann nur ein konstruiertes sein, denn in der Natur gibt es keine geschlossenen Systeme. Es ist kein Zufall, dass Schach und Go sich für die KI besonders eignen, da Spiele immer diesen Aspekt des bewusst Konstruierten haben. Schon Spiele, die den Zufall mit integrieren, wie das Jassen im Vorbeitrag, sind keine absolut geschlossenen Systeme mehr und deshalb für eine künstliche Intelligenz weniger geeignet.

2. Ein klar definiertes Ziel

Auch das klar definierte Ziel – Punkt d) im Vorbeitrag – ist nötig, damit die Bewertung des Korpus ohne menschlichen Eingriff stattfinden kann. Das Ziel des untersuchten Vorgangs und die Bewertung der Korpuseinträge hängen nämlich eng zusammen. Wir müssen verstehen, dass das Ziel der Auswertung des Korpus nicht durch die Daten des Korpus gegeben ist. Daten und Auswertung sind zwei verschiedene Dinge, und die Auswertung der Daten hängt vom Ziel ab. Wir haben diesen Aspekt bereits im Beispiel mit den Panzern diskutiert.

Dort sahen wir, dass ein Korpuseintrag, d.h. die Pixel eines Panzerbilds, nicht automatisch seine Bewertung (fremd/eigen) enthält. Die Bewertung ist eine Information, die nicht in den einzelnen Daten (Pixeln) des Bildes enthalten ist, vielmehr muss sie von aussen (durch eine interpretierende Intelligenz) in den Korpus hinein gegeben  werden. Der gleiche Korpuseintrag kann deshalb sehr unterschiedlich bewertet werden:  Wenn dem Korpus mitgeteilt wird, ob es sich beim jeweiligen Bild um einen eigenen oder einen fremden Panzer handelt, ist damit noch nicht bekannt, ob es ein Raupen- oder ein Radpanzer ist. Die Bewertung kann bei allen solchen Bildern in ganz unterschiedliche Richtungen gehen. Beim Schachspiel und bei Go hingegen ist das anders. Dort wird ein Zug im Spielverlauf (der im Korpus bekannt ist) allein danach bewertet, ob er dem Spielsieg dienlich ist.

Bei Schach und Go gibt es somit ein einfaches, klar definiertes Ziel. Bei Panzerbildern hingegen sind im Gegensatz zu Schach und Go ganz unterschiedliche Beurteilungsziele möglich. Das ist typisch für reale Situationen. Reale Situationen sind immer offen und in ihnen sind unterschiedliche Beurteilungen je nach Situation absolut normal und sinnvoll. Eine Instanz (Intelligenz) ausserhalb der Daten muss zwecks Beurteilung der Daten den Bezug zwischen den Daten und dem Beurteilungsziel herstellen. Diese Aufgabe ist immer an eine Instanz mit einer bestimmten Absicht gebunden.

Der maschinellen Intelligenz fehlt jedoch diese Absicht und sie ist deshalb darauf angewiesen, dass ihr das Ziel von aussen vorgegeben wird. Wenn das Ziel nun so selbstevident ist wie bei Schach und Go, ist das kein Problem und die Bewertung des Korpus kann in der Tat ohne menschliche Intelligenz von der Maschine selbstständig durchgeführt werden. In solchen eindeutigen Situationen kann maschinelles Deep Learning wirklich funktionieren und die menschliche Intelligenz sogar schlagen.

Das trifft aber nur zu, wenn die Spielregeln und das Spielziel klar definiert sind. In allen anderen Fällen braucht es keinen Algorithmus, sondern eine ‹echte›, d.h. eine absichtsvolle Intelligenz.

Fazit

  1. Deep Learning (DL) funktioniert.
  2. DL verwendet ein korpusbasiertes System.
  3. DL kann die menschliche Intelligenz bei gewissen Aufgaben schlagen.
  4. DL funktioniert aber nur in einem geschlossenen System.
  5. DL funktioniert nur dann, wenn das Ziel klar und eindeutig ist.

Ad 4) Geschlossene Systeme sind nicht real, sondern entweder offensichtliche Konstrukte (wie Spiele) oder Idealisierungen von realen Verhältnissen (= Modelle). Solche Idealisierungen sind immer Vereinfachungen im Sinn der Interpretationstheorie und beinhalten eine Informationsreduktion. Sie können deshalb die Realität nicht vollständig abbilden.

Ad 5) Das Ziel, d.h. die ‹Absicht› entspricht einem subjektiven Moment. Dieses subjektive Moment unterscheidet die natürliche von der maschinellen Intelligenz. Der Maschine muss es vorgegeben werden.


Wie wir gesehen haben, lohnt es sich, verschiedene Formen von KI zu unterscheiden und ihre Funktionsweise genauer anzusehen. So werden die Stärken und Schwächen dieser neuen Technologien, die auch die heutige Welt entscheidend mitbestimmen, klarer sichtbar.

Im nächsten Beitrag bringen wir basierend auf den bisherigen Erkenntnissen eine Zusammenstellung der verschiedenen KI-Systeme.


Dies ist ein Beitrag zum Thema Künstliche Intelligenz.

Spiele und Intelligenz (1): Jassen und Schach

Schach oder Jassen, was erfordert mehr Intelligenz?

Jassen ist ein Schweizer Kartenspiel, verwandt mit Bridge, wenn auch etwas hemdsärmliger.

Allgemein wird angenommen, dass Schach mehr Intelligenz verlangt, denn offensichtlich haben weniger intelligente Spieler beim Jassen durchaus eine Chance, beim Schach hingegen nicht. Wenn wir uns überlegen, was ein Computerprogramm können muss, um zu siegen, sieht das Bild aber schnell anders aus: Schach ist für eine Maschine eindeutig einfacher.

Das überrascht Sie vielleicht, aber es lohnt sich, die Gemeinsamkeiten der beiden Spiele, aber auch die Unterschiede genauer anzusehen – und natürlich hat beides viel mit unserem Thema Künstliche Intelligenz zu tun.

Gemeinsamkeiten

a) Klares Spielfeld

Das Schachbrett hat 64 schwarze und weisse Felder. Nur die Figuren, die sich auf diesen Feldern befinden, spielen eine Rolle. Beim Jassen könnte man den sogenannten Jassteppich als Spielfeld bezeichnen. Dieser ist das materielle Spielfeld, so wie das materielle Schachbrett das Spielfeld fürs Schach ist. Wenn wir uns für das siegreiche Spielverhalten interessieren, spielen die Farbe des Jassteppichs und die materielle Beschaffenheit des Schachbretts jedoch keine Rolle, sondern es kommt nur auf das abstrakte, d.h. das ‹informatische› Spielfeld an: Wo können sich unsere Schachfiguren und Spielkarten bewegen? Und diesbezüglich ist die Situation auch beim Jassen völlig klar. Die Karten sind zu jedem Zeitpunkt an einem klar definierten Ort, entweder bei einem bestimmten Spieler bereit zum Ausspielen, bei einem bestimmten Spieler bereits eingesteckt als seine ‹Beute› oder auf dem Jassteppich als offene und für jeden sichtbare Karte. Sowohl beim Schach wie beim Jassen können wir von einem klar definierten Spielfeld ausgehen.

b) Klare Spielregeln

Auch hier gibt es zwischen den beiden Spielen kaum einen Unterschied. Zwar variieren in der Schweiz die Jassregeln von Dorf zu Dorf und von ‹Beiz› zu ‹Beiz› und ein diesbezüglicher Dissens kann zu heftigen Diskussionen führen, doch sobald man sich auf ein Set an Regeln geeinigt hat, ist die Situation klar. Wie beim Schach ist eindeutig, was geht und was nicht, und die möglichen Aktivitäten der Spieler sind eindeutig definiert.

c) Klarer Spielverlauf (Zeitverlauf)

Auch hier unterscheiden sich die beiden Spiele nicht. Zu jedem Zeitpunkt gibt es genau einen Akteur, der handeln darf und seine Handlungsmöglichkeiten sind klar definiert.

d) Klares Spielziel

Beim Schach geht es darum, den gegnerischen König matt zu setzen, ein ganz eindeutiges, klar definiertes Ziel. Beim Jassen entscheidet die Punkte- oder Stichzahl, je nach Variante. Jedes Spiel hat ein klar definiertes Ende. Beim Jassen wird nach neun Stichen gezählt, beim Schach verhindern Remis- und Patt-Regeln, dass ein Spiel nicht beendet werden kann. Es gibt immer einen klaren Sieger und klare Verlierer, notfalls ein definitives Unentschieden.

Unterschiede

e) Eindeutige Ausgangssituation?

Beim Schach ist die Ausgangslage bei jedem Spiel identisch, alle Figuren haben ihren angestammten Platz. Beim Jassen hingegen wird vor jedem Spiel gemischt. Während wir beim Schach somit immer die gleiche Ausgangslage vorfinden, müssen wir uns beim Jassen auf eine immer neue einstellen. Der Zufall spielt somit beim Jassen eine wichtige Rolle, beim Schach ist er hingegen  ganz bewusst ausgeschlossen. Das hat natürlich Konsequenzen. Weil ich beim Jassen mit dem Zufall rechnen muss, kann ich nicht wie beim Schach mit Gewissheiten, sondern muss mit Wahrscheinlichkeiten rechnen.

f) Verdeckte Informationen?

Das Nichtwissen bleibt nun für die Jasser während des ganzen Spiels eine Herausforderung. Während beim Schach zu jedem Zeitpunkt und für jeden Spieler alles offen auf dem Brett erkennbar ist, lebt das Jassen geradezu davon, dass der beteiligte Spieler NICHT weiss, wo sich die Karten befinden. Er muss also raten – d.h. mit Wahrscheinlichkeiten rechnen – und ein bestimmtes Risiko eingehen. Beim Schach gibt es kein Raten, die Situation ist immer klar, offen und evident. Selbstverständlich ist dadurch die Situation beim Schach wesentlich einfacher zu beschreiben, beim Jassen hingegen erschwert das Nicht-Wissen die Beschreibung der Situation.

g) Wahrscheinlichkeiten und Emotionen (Psychologie)

Wenn ich nicht alles weiss, muss ich mit Wahrscheinlichkeiten rechnen. Die Beobachtung zeigt, dass wir Menschen darin durchs Band sehr schlecht sind. Wir lassen uns dabei von Emotionen sehr viel stärker lenken, als wir uns das eingestehen möchten. Ängste und Hoffnungen bestimmen unsere Vorstellungen, und wir schätzen Wahrscheinlichkeiten oft grob falsch ein. Ein KI-Programm hat hier natürlich Vorteile, da Emotionen keine Rolle spielen und die Wahrscheinlichkeiten auch kalkulatorisch viel besser verarbeitet werden können. Doch die Maschine will ja einen Gegner besiegen und muss deshalb seine Reaktionen korrekt einschätzen. Das KI-Programm tut deshalb gut daran, den fehlerhaften Umgang des Gegenübers mit Wahrscheinlichkeiten in seine Überlegungen mit einzubeziehen, was algorithmisch aber nicht sehr einfach ist. Wie erkennt es den Optimisten? Der menschliche Spieler versucht den Gegner zu lesen und ihn gleichzeitig über die eigenen Emotionen zu täuschen. Das gehört zum Spiel. Es nützt dem Programm nichts, wenn es emotionslos rechnet, die Emotionen des Gegenübers aber nicht erkennen und bewerten kann.

h) Kommunikation 

Schach wird von einem Spieler gegen einen anderen gespielt. Gejasst wird meist zu viert, zwei Spieler gegen zwei andere. Dieser Aspekt, dass nämlich zwei Individuen ihre Aktionen miteinander abstimmen müssen, macht das Spiel interessant, und es wäre für ein Jass-Programm fatal, wenn es diesen Aspekt vernachlässigen würde. Wie sollen wir das nun programmieren? Beachten müssen wir dabei natürlich auch den Punkt f) oben, nämlich die Tatsache, dass ich die Karten meines Partners nicht sehen kann, ich kenne weder die Karten meiner Gegner, noch diejenigen meines Partners. Mein Partner und ich sind selbstverständlich daran interessiert, unser Spiel zu koordinieren, und dazu gehört, dass wir einander unsere Möglichkeiten (verdeckte Karten) und unsere Strategien (Absichten zum Spielverlauf) mitteilen. Wenn ich zum Beispiel ein Herz-As habe, möchte ich, dass mein Partner Herz spielt, sodass ich den Stich machen kann. Das darf ich ihm aber nicht offen sagen. Für routinierte Jasser ist das jedoch kein Problem. Erstens ergibt sich aus dem Spielverlauf oft, wer das Herz-As verdeckt in seinen Karten hat. Natürlich ist es nicht einfach, das herauszufinden, da dafür sowohl die gespielten Karten als auch mögliche Taktiken und Strategien in die Kalkulation einbezogen werden müssen. Die Zahl der Möglichkeiten, die Kalkulation der Wahrscheinlichkeiten und die Psychologie der Player kommen alle hier ins Spiel, was zu einer sehr spannenden Gemengelage führen kann – die ja letztlich auch den Reiz des Spiels ausmacht. Beim Schach hingegen, mit seiner stets sehr expliziten Situation, sind die Verhältnisse diesbezüglich sehr viel einfacher.

Doch es kommt noch dicker:

i) Der legale Graubereich

Kann ich mit meinem Partner wirklich nicht über unsere Karten und unsere Strategie kommunizieren? Offiziell ist das natürlich verboten – aber lässt sich das Verbot in der Praxis wirklich durchsetzen?

Natürlich nicht. Während beim Schach praktisch nur die expliziten Spielzüge eine Rolle spielen, gibt es beim Jassen viele zusätzliche Informationen, die ein geübter Spieler lesen können muss. Wie lächle ich, wenn ich eine Karte spiele? Wenn ich das Herz-As habe, das den nächsten Stich machen kann, möchte ich natürlich, dass mein Partner mir hilft und Herz ausspielt. Eine Möglichkeit das zu erreichen, wenn der Partner am Stich ist, ist es, eine wertlose Herzkarte zu spielen und sie dabei ganz deutlich und kräftig auf den Tisch zu hauen. Ein geübter Jasspartner wird das problemlos als Zeichen verstehen, als nächstes Herz und nicht etwa Karo auszuspielen, damit ich in der Folge mit meinem As den Stich machen kann. Niemand wird mir dieses Auf-den-Tisch-Hauen – solange es genügend diskret ist – wirklich verbieten können. Wirklich eingespielte Jassfreunde kennen neben den völlig legalen Zeichen, die sie automatisch durch die Wahl ihrer gespielten Karten abgeben, auch einige Zeichen aus dem Graubereich, mit denen sie ihr Spiel koordinieren.

Diese Zeichen sind Informationen, die eine ambitionierte KI erkennen und verarbeiten können muss. Die Menge der Information, die sie dabei verarbeiten muss, ist nicht nur viel grösser als die Informationsmenge beim Schach, sie ist auch keinesfalls limitiert. Meine KI spielt ja gegen zwei menschliche Gegner und auch diese kommunizieren. Ihre Kommunikation sollte die KI erkennen, um nicht hoffnungslos über den Tisch gezogen zu werden. Die von den Gegnern vereinbarten Zeichen können natürlich variieren und beliebig raffiniert sein. Wie findet meine KI heraus, wie sich die beiden vorgängig abgesprochen haben?

Fazit

Jassen ist schwieriger zu programmieren als Schach

Wenn wir ein Programm für das Jassen entwickeln wollen, müssen wir die Aspekte e) bis i) berücksichtigen, beim Schach hingegen spielen sie kaum eine Rolle. Algorithmisch gesehen stellen die Aspekte e) bis i) jedoch wegen ihrer Unwägbarkeiten eine schwierige Herausforderung dar.

Schach ist im Vergleich zum Jassen für den Computer wesentlich einfacher, da:

– immer gleiche Ausgangssituation
– keine verdeckte Information
– kein Einbezug von Wahrscheinlichkeitsüberlegungen
– geringe Rolle der menschlichen Emotionen
– kein legaler Graubereich, da kein Informationsaustausch zwischen zwei Partnern möglich ist

Schach ist deshalb für ein KI-Programm das einfachere Spiel. Es ist komplett definiert, d.h. die Informationsmenge, die im Spiel ist, ist sehr klein, klar offengelegt und klar begrenzt. Beim Jassen ist all das nicht der Fall.


Dies ist ein Beitrag zum Thema künstliche Intelligenz. Im zweiten Teil zum Thema Spiele und Intelligenz werde ich auf Go und Deep Learning eingehen.

Wie real ist das Wahrscheinliche?

Was nicht im Korpus ist, ist für die KI unsichtbar

Korpusbasierte KI-Systeme sind auf Erfolgskurs. Sie sind ‹disruptiv›, d.h. sie verändern unsere Gesellschaft nachhaltig und in sehr kurzer Zeit. Genügend Gründe also, sich zu vergegenwärtigen, wie diese Systeme effektiv funktionieren.

In den Vorbeiträgen habe ich  dargelegt, dass diese Systeme aus zwei Teilen bestehen, nämlich einem Daten-Korpus und einem neuronalen Netz. Selbstverständlich kann das Netz nichts erkennen, was nicht bereits im Korpus steckt. Die Blindheit des Korpus setzt sich automatisch im neuronalen Netz fort und die KI kann letztlich nur hervorbringen, was bereits in den Daten des Korpus vorgegeben ist. Ebenso verhält es sich mit Fehleingaben im Korpus. Auch diese finden sich in den Resultaten der KI und mindern insbesondere ihre Treffschärfe.

Wenn man sich die Wirkweise der KI vergegenwärtigt,  ist dieser Sachverhalt banal, denn der Lernkorpus ist die Grundlage für diese Art künstliche Intelligenz. Nur was im Korpus ist, kann im Resultat erscheinen und Fehler und Unschärfen des Korpus vermindern automatisch die Aussagekraft.

Weniger banal ist ein anderer Aspekt, der mit der künstlichen Intelligenz der neuronalen Netze ebenfalls essenziell verbunden ist. Es handelt sich um die Rolle der Wahrscheinlichkeit. Neuronale Netze funktionieren über Wahrscheinlichkeiten. Was genau heisst das und wie wirkt sich das in der Praxis aus?

Das neuronale Netz bewertet nach Wahrscheinlichkeit

Ausgangslage

Schauen wir wieder unsere Suchmaschine vom Vorbeitrag an: Ein Kunde unserer Suchmaschine gibt einen Suchstring ein. Andere Kunden haben bereits vorher den gleichen Suchstring eingegeben. Wir schlagen deshalb dem Kunden diejenigen Websites vor, die bereits die früheren Kunden ausgewählt haben. Weil das unübersichtlich viele sein können, wollen wir dem Kunden diejenigen zuoberst zeigen, die für ihn am interessantesten sind (siehe Vorbeitrag). Dazu bewerten wir alle Kunden gemäss ihren bisherigen Suchanfragen. Wie wir das im Detail machen, ist natürlich unser Geschäftsgeheimnis, schliesslich wollen wir gegenüber der Konkurrenz einen Vorsprung herausholen. Wie immer aber wir das auch tun – und wie immer es die Konkurrenz auch tut – am Schluss erhalten wir eine Gewichtung der Vorschläge der bisherigen Nutzer. Anhand dieser Gewichtung wählen wir die Vorschläge aus, die wir dem Fragesteller präsentieren, und die Reihenfolge, in der wir sie ihm zeigen. Und dabei sind die Wahrscheinlichkeiten entscheidend.

Beispiel

Nehmen wir an, der Anfragesteller A stellt  eine Suchanfrage an unsere Suchmaschine und die beiden Kunden B und C haben bereits die gleiche Suchanfrage wie A gestellt  und ihre Wahl, d.h. die Adressen der von ihnen gewählten Websites, in unserem gut gefüllten Korpus hinterlassen. Welche Auswahl sollen wir nun A bevorzugt präsentieren, die von B oder die von C?

Jetzt schauen wir uns die Bewertungen der drei Kunden an: Wie sehr stimmt das Profil von B und C mit dem Kunden A überein? Nehmen wir an, wir kommen auf folgende Übereinstimmungen:

Kunde B:  80%
Kunde C: 30%

Selbstverständlich nehmen wir an, dass Kunde B mit A besser übereinstimmt als C, und A deshalb mit den Antworten von B besser bedient ist.

Ist das aber sicher so?

Die Frage ist berechtigt, denn schliesslich besteht zu keinem der beiden anderen User eine vollständige Übereinstimmung. Vielleicht betreffen gerade die 30%, mit denen A und C übereinstimmen, das Gebiet der aktuellen Suchanfrage von A. Da wäre es schade, die Antwort von B bevorzugt zu platzieren, insbesondere wenn die 80% Übereinstimmung zu B ganz andere Gebiete betrifft, die mit der aktuellen Suchanfrage nichts zu tun haben. Zugegeben, die skizzierte Abweichung von der Wahrscheinlichkeit ist im konkreten Fall unwahrscheinlich, aber sie ist nicht unmöglich – das ist die eigentliche Crux mit den Wahrscheinlichkeiten.

Nun, wir entscheiden uns in diesem Fall vernünftigerweise für B, und wir können sicher sein, dass die Wahrscheinlichkeit auf unserer Seite ist. Für unseren Geschäftserfolg können wir uns getrost auf die Wahrscheinlichkeit verlassen. Warum?

Das hängt mit dem Prinzip der ‹grossen Zahl‹ zusammen. Für den einzelnen Fall kann – wie oben geschildert – die Antwort von C wirklich die bessere sein. In den meisten Fällen aber wird die Antwort von B unserem Kunden besser gefallen und wir tun gut daran, ihm diese Antwort zu geben. Das ist das Prinzip der ‹grossen Zahl›. Es liegt dem Phänomen Wahrscheinlichkeit essenziell zugrunde:

Im Einzelfall kann etwas geschehen, was unwahrscheinlich ist, für viele Fälle können wir uns aber darauf verlassen, dass meistens das Wahrscheinliche geschieht.

Fazit für unsere Suchmaschine
  1. Wenn wir uns also dafür interessieren, in den meisten Fällen recht zu bekommen, halten wir uns an die Wahrscheinlichkeit.
  2. Wir nehmen dabei in Kauf, dass wir in seltenen Fällen daneben greifen.
Fazit für die korpusbasierte KI generell

Was für unsere Suchmaschine gilt, gilt ganz generell für jede korpusbasierte KI, da eine solche immer mit Wahrscheinlichkeiten funktioniert. Somit lautet das Fazit für die korpusbasierte KI:

  1. Wenn wir uns dafür interessieren, in den meisten Fällen recht zu bekommen, halten wir uns an die Wahrscheinlichkeit.
  2. Wir nehmen dabei in Kauf, dass wir in seltenen Fällen daneben greifen.

Wir müssen bei der korpusbasierten KI mit einer inhärenten Schwäche rechnen, einer Art Achillesferse einer sonst hochpotenten Technologie. Diese Ferse sollten wir sorgfältig weiter beobachten:

  1. Vorkommen:
    Wann tritt der Fehler eher auf, wann kann man ihn eher vernachlässigen? Dies hängt mit der Grösse des Korpus und seiner Qualität, aber auch mit der Art der Fragestellung zusammen.
  2. Konsequenzen:
    Was hat es für Folgen, wenn seltene Fälle vernachlässigt werden?
    Kann das permanente Mitteln und Beachten nur der wahrscheinlichsten Lösungen als intelligent bezeichnet werden?
  3. Zusammenhänge:
    Für die grundlegenden Zusammenhänge interessant ist der Bezug zum Begriff der Entropie: Der 2. Hauptsatz der Wärmelehre besagt, dass in einem geschlossenen System immer das Wahrscheinlichere geschieht und die Wärmelehre misst diese Wahrscheinlichkeit anhand der Variablen S, welche sie als Entropie bezeichnet.
    Das Wahrscheinliche geschieht, in der Wärmelehre und in unserer Suchmaschine – wie aber wählt eine natürliche Intelligenz?

Dies ist ein Beitrag zum Thema künstliche Intelligenz. Im nächsten Beitrag geht es um Spiele und Intelligenz, konkret um den Unterschied zwischen Schach und Jassen.

Die Intelligenz in der Suchmaschine

Wie kommt die Intelligenz in die Suchmaschine?

Nehmen wir an, Sie bauen eine Suchmaschine. Sie wollen dabei möglichst keine teuren und nicht immer fehlerfreien menschlichen Fachexperten (domain experts) einsetzen, sondern die Suchmaschine nur mit ausreichend Datenservern (der Hardware für den Korpus) und einer ausgeklügelten Software bauen. Wieder verwenden Sie im Prinzip ein neuronales Netz mit einem Korpus. Wie bringen Sie nun die Intelligenz in Ihr System?

Trick 1: Lass die Kunden den Korpus trainieren

Bei einer Suchmaschine geht es wie bei der Panzer-KI der Vorbeiträge um Zuordnungen, diesmal von einem Eingabetext (Suchstring) eines Kunden zu einer Liste von Webadressen, die für seine Suche interessant sein könnten. Um die relevanten Adressen zu finden, basiert Ihr System wiederum auf einem Lernkorpus, der diesmal aus der Liste aller Sucheingaben von allen Ihren bisherigen Kunden besteht. Die Webadressen, die die früheren Kunden aus den ihnen angebotenen auch tatsächlich angeklickt haben, sind im Korpus als positive Hits vermerkt. Also geben Sie bei neuen Anfragen – auch von anderen Kunden – einfach die Adressen an, die bisher am meisten Klicks erhalten haben. So schlecht können die ja nicht sein, und mit jeder Anfrage und dem darauf folgenden Klick verfeinert sich das System. Und dann gilt: Je grösser der Korpus, umso präziser.

Wieder stammen diese Zuordnungen von aussen, nämlich von den Menschen, die die Auswahl, die Ihre Suchmaschine ihnen angeboten hat, mit ihren Klicks entsprechend bewertet haben. Die Menschen haben das getan:

  • mit ihrer menschlichen Intelligenz und
  • entsprechend ihren jeweiligen Interessen.

Besonders der zweite Punkt ist interessant. Wir könnten später noch etwas detaillierter darauf eingehen.

Trick 2: Bewerte die Kunden dabei mit

Nicht jede Zuordnung von jedem Kunden ist gleich relevant. Als Suchmaschinenbetreiber können Sie hier an zwei Punkten optimieren:

  • Bewerten Sie die Bewerter:
    Sie kennen ja alle Eingaben Ihrer Kunden. So können Sie leicht herausfinden, wie verlässlich die von ihnen gemachten Zuordnungen (die angeklickte Webadressen zu den eingegebenen Suchstrings) sind. Nicht alle Ihre Kunden sind in dieser Hinsicht gleich gut. Je mehr andere Kunden für den gleichen Suchstring die gleiche Webadresse anwählen, umso sicherer wird die Zuordnung auch für zukünftige Anfragen sein. Verwenden Sie nun diese Information, um die Kunden zu gewichten: Der Kunde, der bisher die verlässlichsten Zuordnungen hatte, d.h. derjenige, der am meisten das wählte, was die anderen auch wählten, wird am höchsten gewichtet. Einer, dem die anderen weniger folgten, gilt als etwas weniger verlässlich. Durch die Gewichtung erhöhen Sie die Wahrscheinlichkeit, dass die zukünftigen Suchergebnisse die Websites höher bewerten, die die meisten Kunden interessieren.
  • Bewerten Sie die Sucher:
    Nicht jeder Suchmaschinenbenutzer hat die gleichen Interessen. Das können Sie berücksichtigen, denn Sie kennen ja bereits alle früheren Eingaben von ihm. Diese können Sie verwenden, um ein Profil von ihm zu erstellen. Das dient natürlich dazu, die Suchergebnisse für ihn entsprechend auszuwählen. Bewerter mit einem ähnlichen Profil wie der Sucher werden die potenziellen Adressen auch ähnlich gewichten, und sie können so die Suchergebnisse noch mehr im Interesse des Kunden personalisieren.

Es lohnt sich für Sie als Suchmaschinenbetreiber auf jeden Fall, von allen Ihren Kunden ein Profil zu erstellen,  nur schon zur Verbesserung der Qualität der Suchvorschläge.

Konsequenzen

  1. Suchmaschinen werden durch den Gebrauch immer präziser.
    Das gilt für alle korpusbasierten Systeme, also für alle Technologien mit neuronalen Netzen: Je grösser ihr Korpus ist, desto besser ist ihre Präzision.  Sie können zu erstaunlichen Leistungen fähig sein.
  2. In diesem Zusammenhang lässt sich ein bemerkenswerter Rückkopplungseffekt feststellen: Je grösser ihr Korpus ist, umso besser ist die Qualität einer Suchmaschine und deshalb wird sie häufiger benützt, was wiederum ihren Korpus vergrössert und so ihre Attraktivität gegenüber der Konkurrenz steigert. Dieser Effekt führt unweigerlich zu den Monopolen, wie sie typisch sind für alle Anwendungen von korpusbasierter Software.
  3. Alle Bewertungen sind primär von Menschen erstellt worden.
    Die Basis der Intelligenz – die zuordnenden Eingaben im Korpus – erfolgen weiterhin durch Menschen. Bei den Suchmaschinen ist das jeder einzelne Benutzer, der so sein Wissen in den Korpus eingibt. So künstlich ist die Intelligenz in dieser KI also gar nicht.
  4. Korpusbasierte Systeme tragen die Tendenz zur Blasenbildung in sich: Wenn Suchmaschinen von ihren Kunden Profile anlegen, können sie diese mit besseren Suchergebnissen bedienen. Das führt aber in einem selbstreferenziellen Prozess unweigerlich zu einer Blasenbildung: Anwender mit ähnlichen Ansichten werden von den Suchmaschinen immer näher zusammen gebracht, da sie auf diese Weise die Suchergebnisse erhalten, die ihren jeweiligen Interessen und Ansichten am besten entsprechen.  Abweichende Ansichten bekommen sie immer weniger zu Gesicht.

Dies ist ein Beitrag zum Thema künstliche Intelligenz. Im nächsten Beitrag geht es um einen weiteren wichtigen Aspekt der korpusbasierten Systeme, nämlich um die Rolle der Wahrscheinlichkeit.

Was der Korpus weiss – und was nicht

Die Erstellung des Korpus

In einem Vorbeitrag haben wir gesehen, wie der Korpus – die Basis für das neuronale Netz der KI – erstellt wird. Das neuronale Netz kann den Korpus auf raffinierte Weise interpretieren, aber selbstverständlich kann das neuronale Netz nichts aus dem Korpus herausziehen, was nicht drin steckt.

Das neuronale Netz holt das Wissen aus seinem Korpus
Abb. 1: Das neuronale Netz holt das Wissen aus seinem Korpus

Wie wird der Korpus erstellt? Ein Fachexperte ordnet Bilder einer bestimmten Klasse, einem bestimmten Typus zu, z.B. ‹fremde Panzer› versus ‹eigene Panzer›. Diese Zuordnungen des Experten sind in Abb. 2 die roten Pfeile, welche z.B. die Panzerbilder bewerten.

Abb. 2: Erstellung der Zuordnungen im Korpus
Abb. 2: Erstellung der Zuordnungen im Korpus

Selbstverständlich müssen die durch den menschlichen Experten erfolgten Zuordnungen der einzelnen Bilder zu den Zielkategorien korrekt sein. Doch das reicht nicht. Es bestehen prinzipielle Grenzen für die Auswertbarkeit eines Korpus durch ein noch so raffiniertes neuronales Netz.

Der Zufall regiert im zu kleinen Korpus

Wenn ich nur farbige Bilder der eigenen und schwarzweisse Bilder der fremden Panzer habe (siehe Einstiegsbeitrag zur KI), dann kann sich das System leicht irren und alle farbigen der eigenen und die schwarzweissen der fremden Armee zuordnen. Mit einem genügend grossen Korpus kann dieser Mangel zwar behoben werden, doch zeigt das Beispiel, wie wichtig die richtige Bestückung des Korpus ist. Wenn ein Zufall (farbig/schwarzweiss) entscheidend in den Korpus hineinspielt, wird das System falsche Schlüsse ziehen. Der Zufall spielt dabei eine umso grössere Rolle, je kleiner der Korpus, aber auch je grösser die Anzahl der möglichen ‹Outcomes› (= Anzahl der prinzipiell möglichen Resultate) ist.

Neben diesen relativen Hindernissen gibt es aber auch prinzipielle Grenzen der Auswertbarkeit eines KI-Korpus. Darauf gehen wir jetzt ein.

Raupen- oder Radpanzer?

Was im Korpus nicht drin ist, kann auch nicht herausgeholt werden. Selbstverständlich kann ich mit einem Panzer-Korpus keine Flugzeuge klassifizieren.

Neuronales Netz mit Panzern
Abb 3: Die Bewertung entscheidet – Korpus mit eigenen und fremden Panzern und entsprechend programmiertem Netz.

Was aber ist, wenn unser Panzersystem herausfinden soll, ob es sich um Raupen- oder um Radpanzer handelt? Im Prinzip können im Korpus ja Bilder von beiden Sorten von Panzern enthalten sein. Wie kann die Panzer-KI aus unserem Beispiel das erkennen?

Die einfache Antwort ist: gar nicht. Im Korpus hat das System zwar viele Bilder von Panzern und weiss bei jedem, ob es ein fremder oder eigener ist. Aber ist es ein Radpanzer oder nicht? Diese Information steckt im Korpus (noch) nicht drin und kann deshalb von der KI nicht herausgezogen werden. Zwar kann ein Mensch jedes einzelne Bild entsprechend beurteilen, so wie er das mit der Eigenschaft ‹fremd/eigen› gemacht hat. Aber dann ist es eine KI-fremde, von aussen zugeführte Intelligenz, die das tut. Das neuronale Netz kann das nicht selber leisten, da es nichts über Raupen oder Räder weiss. Es hat nur gelernt, eigene von fremden Panzern zu unterscheiden. Für jede neue Kategorie muss zuerst die Information in den Korpus gegeben (neue rote Pfeile in Abb. 2) und dann das neuronale Netz für die neuen Fragen geschult werden.

Eine solche Schulung muss zwar nicht zwingend am Panzer-Korpus erfolgen. Das System könnte auch anhand eines Korpus von ganz anderen Fahrzeugen lernen, ob sich diese sich auf Rädern oder Raupen bewegen. Auch wenn sich der Unterschied automatisch auf den Panzerkorpus übertragen lässt, muss doch das externe Räder/Raupen-System vorgängig trainiert werden – und zwar mit Zuordnungen, die wieder ein Mensch gemacht hat.

Selber, ohne vorgegebene Beispiele, findet das KI-System dies nicht heraus.

Fazit

  1. Aus einem Korpus können nur Schlüsse gezogen werden, die im Korpus angelegt sind.
  2. Die Kategorie-Zuordnungen (die roten Pfeile in Abb. 2) kommen immer von aussen, d.h. von einem Menschen.

In unserem Beispiel haben wir mit dem Panzerbeispiel eine typische Bilderkennungs-KI untersucht. Aber gelten die daraus gezogenen Schlüsse (siehe Fazit oben) auch für andere korpusbasierte Systeme? Und gibt es nicht so etwas wie ‹Deep Learning›, also die Möglichkeit, dass ein KI-System ganz von selber lernt?

Schauen wir deshalb im nächsten Beitrag einen ganz anderen Typ mit korpusbasierter KI an.


Dies ist ein Beitrag zum Thema künstliche Intelligenz.


 

Korpusbasierte KI: Wo steckt die Intelligenz?

Vorbemerkung

Im Vorbeitrag haben wir gesehen, dass bei der regelbasierten KI die Intelligenz in den Regeln steckt. Diese Regeln sind menschengemacht und das System ist so intelligent wie die Menschen, die die Regeln geschrieben haben. Wie sieht das nun bei der korpusbasierten Intelligenz aus?

Die Antwort ist etwas komplizierter als bei den regelbasierten Systemen. Schauen wir deshalb den Aufbau eines solchen korpusbasierten Systems genauer an. Er geschieht in drei Schritten:

  1. Erstellen einer möglichst grossen Datensammlung (Korpus)
  2. Bewertung dieser Datensammlung
  3. Training des neuronalen Netzes (Lernphase)

Sobald das Netz erstellt ist, kann es angewendet werden:

  1.  Anwendung des neuronalen Netzes

Schauen wir die vier Schritte genauer an und überlegen wir uns dabei, worauf es ankommt und wo die Intelligenz in das korpusbasierte System hineinkommt.

Schritt 1: Erstellung der Datensammlung

In unserem Panzerbeispiel besteht der Korpus (die Datensammlung) aus Photographien von Panzern. Bilder sind typisch für korpusbasierte Intelligenz, aber die Sammlung kann natürlich auch andere Informationen enthalten, z.B. Suchanfragen von Kunden einer Suchmaschine oder GPS-Daten von Handys. Typisch ist, dass die Daten von jedem einzelnen Eintrag aus so vielen Einzelelementen (z.B. Pixeln) bestehen, dass Ihre Auswertung mit bewusst von Menschen konstruierten Regeln zu aufwendig wird. Dann lohnt sich ein regelbasiertes System nicht mehr.

Die Sammlung der Daten reicht aber nicht aus. Sie müssen jetzt auch bewertet werden.

Schritt 2: Bewertung des Korpus
Korpusbasiertes System
Abb. 1: Korpusbasiertes System

Abb. 1 zeigt das bereits bekannte Bild aus unserem Panzerbeispiel. Auf der linken Seiten sehen Sie den Korpus. Dieser ist in der Abbildung bereits bewertet, die Bewertung ist symbolisiert durch die kleinen schwarzen und grünen Fähnchen (Flags) links an jedem Panzerbild.

Man kann sich den bewerteten Korpus vereinfacht als eine zweispaltige Tabelle vorstellen. In der linken Spalte sitzt die Bildinformation, in der rechten die Bewertung und der Pfeil dazwischen ist die Zuordnung, die somit ein wesentlicher Teil des Korpus wird, sie sagt nämlich, zu welcher Kategorie (e oder f) das jeweilige Bild gehört, wie es also bewertet wird.

Korpus mit Bewertungen
Tabelle 1: Korpus mit Bewertungen (e=eigen, f=fremd)

Typischerweise sind die Informationsmengen in den beiden Spalten von sehr unterschiedlicher Grösse. Während die Bewertung in der rechten Spalte in unserem Panzerbeispiel aus genau einem Bit besteht, enthält das Bild der linken Spalte alle Pixel der Photographie; zu jedem Pixel sind Lage, Farbe usw. abgespeichert, also eine ziemlich grosse Datenmenge. Dieser Unterschied im Grössenverhältnis ist typisch für korpusbasierte Systeme – und falls Sie philosophisch interessiert sind, möchte ich auf den Bezug zum Thema Informationsreduktion und Entropie hinweisen . Im Moment geht es uns aber um die Intelligenz in den korpusbasierten KI-Systemen und wir halten dazu fest, dass im Korpus zu jedem Bild seine korrekte Zielkategorie fest zugeordnet wird.

Bei dieser Zuordnung wissen wir nicht, wie sie geschieht, denn sie wird durch einen Menschen durchgeführt, mit den Neuronen in seinem eigenen Kopf, deren genaues Verhalten ihm wohl kaum bewusst ist. Er könnte also nicht Regeln dafür angeben. Hingegen weiss er, was die Bilder darstellen, und vermerkt das im Korpus, eben mit der Zuordnung der entsprechenden Kategorie. Diese Zuordnung kommt von aussen durch den Menschen in den Korpus, sie ist zu hundert Prozent menschengemacht. Gleichzeitig ist diese Bewertung eine absolute Bedingung und die Grundlage für den Aufbau des neuronalen Netzes. Auch später, wenn das fertig trainierte neuronale Netz den Korpus mit den von aussen eingebrachten Zuordnungen nicht mehr braucht, war er doch vorher notwendig, damit das Netz überhaupt entsteht und arbeiten kann.

Woher stammt also die Intelligenz bei der Zuordnung der Kategorien e) und f)? Es ist letztlich ein Mensch, der diese Zuordnung macht und auch falsch machen kann; es handelt sich um seine Intelligenz. Sobald die Zuordnung im Korpus einmal notiert ist, handelt es sich nicht mehr um aktive Intelligenz, sondern um fixiertes Wissen.

Bewertung des Korpus
Abb. 2: Bewertung des Korpus

Die Bewertung des Korpus ist eine entscheidende Phase, und Intelligenz ist dabei zweifellos nötig. Die zusammen getragene Datensammlung muss bewertet werden und der Fachexperte, der diese Bewertung durchführt, muss garantieren, dass sie korrekt ist. In Abb. 2 ist die Intelligenz des Fachexperten durch den gelben Kreis repräsentiert. Der Korpus erhält das so erstellte Wissen über die Zuordnungen; die Zuordnungen selber sind in Abb. 2 als rote Pfeile dargestellt.

Wissen ist etwas anderes als die Intelligenz. Es ist einem gewissen Sinn passiv. In diesem Sinn handelt es sich bei den im Korpus festgehaltenen Informationen um Wissensobjekte, d.h. um Zuordnungen, die formuliert sind und nicht mehr bearbeitet werden müssen. Intelligenz hingegen ist ein aktives Prinzip, das selber Wertungen vornehmen kann, so wie es der menschliche Experte tut. Bei den Elementen im Korpus aber handelt es sich um Daten oder dann bei den erwähnten Zuordnungen um Resultate der Intelligenz von Experten – also um fest formuliertes Wissen.

Um dieses Wissen von der Intelligenz zu unterscheiden, habe ich es in Abb. 2 nicht gelb, sondern grün markiert.

Wir unterscheiden somit sinnvollerweise drei Dinge:

Daten (die Datensammlung im Korpus)
Wissen (die durchgeführte Bewertung dieser Daten)
Intelligenz (die Fähigkeit, diese Bewertung durchzuführen).

Schritt 3: Training des neuronalen Netzes
Lernphase
Abb. 3: Das neuronale Netz lernt das Wissen des Korpus

In der Trainingsphase wird auf Basis des Lernkorpus das neuronale Netz aufgebaut. Damit das funktioniert, ist wieder eine beträchtliche Intelligenz notwendig, diesmal kommt sie vom KI-Experten, der das Funktionieren der Lernphase ermöglicht und steuert. Dabei spielen Algorithmen eine Rolle, die dafür verantwortlich sind, dass das Wissen im Korpus korrekt ausgewertet wird und das neuronale Netz genau die Form erhält, die bewirkt, dass alle im Korpus festgehaltenen Zuordnungen auch durch das Netz nachvollzogen werden können.

Die Wissensextraktion und die dabei verwendeten Algorithmen sind durch den braunen Pfeil zwischen Korpus und Netz symbolisiert. Wenn man will, kann man ihnen durchaus eine gewisse Intelligenz zubilligen, doch sie tun nichts, was nicht vom IT-Experten bzw. vom Wissen im Korpus vorgegeben wird. Das entstehende neuronale Netz selber hat keine eigene Intelligenz, sondern ist das Ergebnis dieses Prozesses und somit der Intelligenz der Experten. Es enthält aber beträchtliches Wissen und ist deshalb in Abb. 3 grün dargestellt, wie das Wissen im Korpus in Abb. 2. Im Gegensatz zum Korpus sind die Zuweisungen (rote Pfeile) aber jetzt wesentlich komplexer, genau so, wie es in einem neuronalen Netz eben komplexer zu und her geht als in einer einfachen zweispaltigen Tabelle (Tabelle 1).

Und noch etwas unterscheidet das Wissen im Netz vom Wissen im Korpus: Im Korpus handelt es sich um Wissen über Einzelfälle, im Netz hingegen ist das Wissen abstrakt. Es kann deshalb auch auf bisher unbekannte Fälle angewendet werden.

Schritt 4: Anwendung
Anwendung eines neuronalen Netzes
Abb. 4: Anwendung eines neuronalen Netzes

In Abb. 4 wird ein bisher unbekanntes Bild vom neuronalen Netz bewertet und entsprechend dem im Netz gespeicherten Wissen kategorisiert. Dabei ist kein Korpus und auch kein Experte mehr nötig, es reichen die ‚geschulten‘, aber jetzt feststehenden Verdrahtungen im neuronalen Netz. Das Netz ist in diesem Moment nicht mehr in der Lage, etwas dazuzulernen. Es ist aber fähig zu durchaus eindrücklichen Leistungen mit ganz neuem Input. Diese Leistungen werden ermöglicht durch die vorgängigen Arbeiten, also den Aufbau des Korpus, die in ihm enthaltenen, (hoffentlich) korrekten Bewertungen und den Algorithmen der Lernphase. Hinter dem Lernkorpus steckt die menschliche Intelligenz des Fachexperten, hinter den Algorithmen der Trainingsphase die menschliche Intelligenz des IT-Experten.

Fazit

Was uns als künstliche Intelligenz erscheint, ist das Resultat der durchaus menschlichen, d.h. natürlichen Intelligenz der Fachexperten und IT-Spezialisten.


Dies ist ein Beitrag zum Thema künstliche Intelligenz. Im nächsten Beitrag schauen wir noch genauer hin. Wir schauen, was für Wissen in einem Korpus wirklich steckt. Und was die KI aus dem Korpus herausholen kann und was nicht.

Vergleich der Entwicklung der beiden KI-Methoden

Zwei KI-Methoden und ihre Herausforderungen

In meinem ersten Beitrag zur KI  habe ich die beiden bereits in den 90er-Jahren verwendeten, sehr unterschiedlichen KI-Methoden skizziert. Beide Methoden waren damals nicht in Hochform. Folgende Mängel standen ihnen im weg:

Bei der korpusbasierten waren es:
– Die Intransparenz der Schlussfolgerungs-Wege
– Die Notwendigkeit, einen sehr grossen und korrekten Lernkorpus aufzubauen.

Bei der regelbasierten waren es:
– Die Rigidität der mathematischen Logik
– Die Unschärfe unserer Wörter
– Die Notwendigkeit, sehr grosse Wissensbasen manuell aufzubauen
– Die Notwendigkeit, teure und seltene Fachexperten einzusetzen.

Was wurde seit den 90er-Jahren verbessert?

Wir haben den phänomenalen Aufschwung der korpusbasierten Technik erlebt; praktisch alles, was heute KI genannt wird, funktioniert über die korpusbasierte Methode und ist in der Tat sehr eindrücklich.

Im Gegensatz dazu waren die Hindernisse für die regelbasierte Methode – rigide Logik und vieldeutige Begriffe – nicht so leicht zu überwinden. Sie machten einen Paradigmenwechsel erforderlich, eine grundlegende Änderung der Denkweise: Weg von der Sicherheit der traditionellen Logik hin zu einem offenen System. Diesen Schritt wollten die akademischen Teams nicht gehen, weshalb die traditionelle regelbasierte Methode mehr oder weniger dort blieb, wo sie war. Die Hindernisse sind zwar nicht unüberwindlich, wie der Erfolg z.B. unserer Begriffsmoleküle zeigt, doch diese neue regelbasierte Methoden ist kaum bekannt.

Verbreitung der KI-Methoden im Verlauf der Zeit

Abb 1: Schätzung der Verbreitung der KI-Methoden.
Die Vertikalachse ist vertikal gestaucht, d.h. die Grössenverhältnisse sind noch drastischer als dargestellt. Die Kurve ist zudem oben abgeschnitten, da die exponentielle Zunahme der korpusbasierten Methode den Rahmen sprengen würde.

In Abb. 1 habe ich versucht darzustellen, wie sich der Einsatz der Methoden im Verlauf der Zeit verändert hat.  Während die korpusbasierten Methoden (grün) ihre Verbreitung exponentiell gesteigert haben, sind die regelbasierten (blau) praktisch stationär geblieben. Die verbesserte regelbasierte Methode der Begriffsmoleküle (gelb) wird zur Zeit erst marginal eingesetzt.


Dies ist ein Beitrag zum Thema künstliche Intelligenz (KI). Aber ist der Name überhaupt korrekt? Sind diese Systeme wirklich intelligent? Schauen wir als erstes die regelbasierte Intelligenz an.

Die drei Neuerungen der regelbasierten KI

Haben die neuronalen Netze die regelbasierten Systeme abgehängt?

Es ist nicht zu übersehen: Die korpusbasierte KI hat die regelbasierte KI um Längen überholt. Neuronale Netze machen das Rennen, wohin man schaut. Schläft die Konkurrenz? Oder sind regelbasierte Systeme schlicht nicht in der Lage, gleichwertige Ergebnisse wie neuronale Netze zu erzielen?

Meine Antwort ist, dass die beiden Methoden aus Prinzip für sehr unterschiedliche Aufgaben prädisponiert sind. Ein Blick auf die jeweiligen Wirkweisen macht klar, wofür die beiden Methoden sinnvollerweise eingesetzt werden. Je nach Fragestellung ist die eine oder die andere im Vorteil.

Trotzdem bleibt das Bild: Die regelbasierte Variante scheint auf der Verliererspur. Woher kommt das?

In welcher Sackgasse steckt die regelbasierte KI?

Meines Erachtens hat das Hintertreffen der regelbasierten KI damit zu tun, dass sie ihre Altlasten nicht loswerden will. Dabei wäre es so einfach. Es geht darum:

  1. Semantik als eigenständiges Wissensgebiet zu erkennen
  2. Komplexe Begriffsarchitekturen zu verwenden
  3. Eine offene und flexible Logik (NMR) einzubeziehen.

Wir tun dies seit über 20 Jahren mit Erfolg. Andernorts allerdings ist
die Notwendigkeit dieser drei Neuerungen und des damit verbundenen Paradigmenwechsels noch nicht angekommen.

Was bedeuten die drei Punkte nun im Detail?

Punkt 1: Semantik als eigenständiges Wissensgebiet erkennen

Üblicherweise ordnet man die Semantik der Linguistik zu. Dem wäre im Prinzip nichts entgegen zu halten, doch in der Linguistik lauert für die Semantik eine kaum bemerkte Falle: Linguistik beschäftigt sich mit Wörtern und Sätzen. Der Fehler entsteht dadurch, dass man die Bedeutung, d.h. die Semantik, durch den Filter der Sprache sieht und glaubt, ihre Elemente auf die gleiche Weise anordnen zu müssen, wie die Sprache das mit den Wörtern macht. Doch die Sprache unterliegt einer entscheidenden Einschränkung, sie ist linear, d.h. sequenziell: Ein Buchstabe kommt nach dem anderen, ein Wort nach dem anderen.  Es ist nicht möglich, Wörter parallel nebeneinander zu setzen. Im Denken können wir das aber. Und wenn wir die Semantik von etwas untersuchen, geht es darum, wie wir denken und nicht, wie wir sprechen.

Wir müssen also Formalismen finden für die Begriffe, wie sie im Denken vorkommen. Die Beschränkung durch die lineare Anordnung der Elemente und die sich daraus ergebende Notwendigkeit, behelfsweise und in jeder Sprache anders mit grammatikalischen Kunstgriffen Klammerungen und komplexe Beziehungsstrukturen nachzubilden, diese Beschränkung gilt im Denken nicht und wir erhalten dadurch auf der semantischen Seite ganz andere Strukturen als auf der sprachlichen Seite.

Wort ≠ Begriff

Was sicher nicht funktioniert, ist eine simple «semantische Annotation» von Wörtern. Ein Wort kann viele, sehr unterschiedliche Bedeutungen haben. Eine Bedeutung (= ein Begriff) kann durch unterschiedliche Wörter ausgedrückt werden. Wenn man Texte analysieren will, darf man nicht die einzelnen Wörter, sondern muss immer den Gesamtkontext ansehen. Nehmen wir das Wort «Kopf». Wir sprechen z.B. vom Kopf eines Briefes oder vom Kopf eines Unternehmens. Wir können nun den Kontext in unseren Begriff hineinnehmen, indem wir den Begriff <Kopf< mit anderen Begriffen verbinden. So gibt es einen <Körperteil<Kopf< und eine <Funktion<Kopf<.  Der Begriff links (<Körperteil<) sagt dann aus, von welchem Typ der Begriff rechts (<Kopf<) ist. Wir typisieren also. Wir suchen den semantischen Typ eines Begriffs und setzen ihn vor den Unterbegriff.

Konsequent komposite Datenelemente

Die Verwendung typisierter Begriffe ist nichts Neues. Wir gehen aber weiter und bilden ausgedehnte strukturierte Graphen, diese komplexen Graphen bilden dann die Basis unserer Arbeit. Das ist etwas ganz anderes als die Arbeit mit Wörtern. Die Begriffsmoleküle, die wir verwenden, sind solche Graphen, die eine ganz spezielle Struktur aufweisen, sodass sie sowohl für Menschen wie für Maschinen leicht und schnell lesbar sind. Die komposite Darstellung hat viele Vorteile, einer ist z.B. dass der kombinatorischen Explosion ganz einfach begegnet wird und so die Zahl der atomaren Begriffe und Regeln drastisch gekürzt werden kann. Durch die Typisierung und die Attribute können ähnliche Begriffe beliebig geschärft werden, wir können mit Molekülen dadurch sehr präzis «sprechen». Präzision und Transparenz der Repräsentation haben darüber hinaus viel damit zu tun, dass die spezielle Struktur der Graphen (Moleküle) direkt von der multifokalen Begriffsarchitektur abgeleitet ist (siehe im folgenden Punkt 2).

Punkt 2: Komplexe Begriffsarchitekturen verwenden

Begriffe sind in den Graphen (Begriffsmoleküle) über Relationen verbunden. Die oben genannte Typisierung ist eine solche Relation: Wenn der <Kopf< als ein <Körperteil< gesehen wird, dann ist er vom Typ <Körperteil< und es besteht eine ganz bestimmte Relation zwischen <Kopf< und <Körperteil<, nämlich eine sogenannte hierarchische oderIS-A‹-Relation – letzteres darum, weil man bei hierarchischen Relationen immer ‹IST-EIN› sagen kann, also in unserem Fall: der <Kopf< ist ein <Körperteil<.

Die Typisierung ist eine der beiden grundlegenden Relationen in der Semantik. Wir ordnen eine Anzahl Begriffe einem übergeordneten Begriff, also ihrem Typ zu. Dieser Typ ist natürlich genauso ein Begriff und er kann deshalb selber wieder typisiert werden. Dadurch entstehen hierarchische Ketten von ‹IS-A›-Relationen, mit zunehmender Spezifizierung, z.B. <Gegenstand<Möbel<Tisch<Küchentisch<. Wenn wir alle Ketten der untergeordneten Begriffe, die von einem Typ ausgehen, zusammenbinden, erhalten wir einen Baum. Dieser Baum ist der einfachste der vier Architekturtypen für die Anordnung von Begriffen.

Von dieser Baumstruktur gehen wir aus, müssen aber erkennen, dass eine blosse Baumarchitektur entscheidende Nachteile hat, die es verunmöglichen, damit wirklich präzis greifende Semantiken zu bauen. Wer sich für die verbesserten und komplexeren Architekturtypen und ihre Vor- und Nachteile interessiert, findet eine ausführliche Darstellung der vier Architekturtypen auf der Website von meditext.ch.

Bei den Begriffsmolekülen haben wir den gesamten Formalismus, d.h. die innere Struktur der Regeln und Moleküle selbst auf die komplexen Architekturen ausgerichtet. Das bietet viele Vorteile, denn die Begriffsmoleküle weisen jetzt in sich genau die gleiche Struktur auf wie die Achsen der multifokalen Begriffsarchitektur. Man kann die komplexen Faltungen der multifokalen Architektur als Gelände auffassen, mit den Dimensionen oder semantischen Freiheitsgraden als komplex verschachtelte Achsen. Die Begriffsmoleküle nun folgen diesen Achsen in ihrer eigenen inneren Struktur. Das macht das Rechnen mit den Molekülen so einfach. Mit simplen Hierarchiebäumen oder multidimensionalen Systemen würde das nicht funktionieren. Und ohne konsequent komposite Datenelemente, deren innere Struktur auf fast selbstverständliche Weise den Verzweigungen der komplexen Architektur folgt, auch nicht.

Punkt 3: Eine offene und flexible Logik (NMR) einbeziehen

Dieser Punkt ist für theoretisch vorbelastete Wissenschaftler möglicherweise der härteste. Denn die klassische Logik erscheint den meisten unverzichtbar und viele kluge Köpfe sind stolz auf ihre Kenntnisse darin. Klassische Logik ist in der Tat unverzichtbar – nur muss sie am richtigen Ort eingesetzt werden. Meine Erfahrung zeigt, dass wir im Bereich des NLP (Natural Language Processing) eine andere Logik brauchen, nämlich eine, die nicht monoton ist. Eine solche nichtmonotone Logik (NMR) erlaubt es, für das gleiche Resultat mit viel weniger Regeln in der Wissensbasis auszukommen. Die Wartung wird dadurch zusätzlich vereinfacht. Auch ist es möglich, das System ständig weiter zu entwickeln, weil es logisch offen bleibt. Ein logisch offenes System mag einen Mathematiker beunruhigen, die Erfahrung aber zeigt, dass ein NMR-System für die regelbasierte Erfassung des Sinns von frei formuliertem Text wesentlich besser funktioniert als ein monotones.

Fazit

Heute scheinen die regelbasierten Systeme im Vergleich zu den korpusbasierten im Hintertreffen zu sein. Dieser Eindruck täuscht aber und rührt daher, dass die meisten regelbasierten Systeme den Sprung in ein modernes System noch nicht vollzogen haben. Dadurch sind sie entweder:

  • nur für Aufgaben in kleinem und wohldefiniertem Fachgebiet anwendbar oder
  • sehr rigid und deshalb kaum einsetzbar oder
  • sie benötigen einen unrealistischen Ressourceneinsatz und werden unwartbar.

Wenn wir aber konsequent komposite Datenelemente und höhergradige Begriffsarchitekturen verwenden und bewusst darauf verzichten, monoton zu schliessen, kommen wir – für die entsprechenden Aufgaben – mit regelbasierten Systemen weiter als mit korpusbasierten.

Regelbasierte und korpusbasierte Systeme sind sehr unterschiedlich und je nach Aufgabe ist das eine oder das andere im Vorteil. Darauf werde ich in einem späteren Beitrag eingehen.


Dies ist ein Beitrag zum Thema künstliche Intelligenz (KI). Ein Folgebeitrag beschäftigt sich mit der aktuellen Verbreitung der beiden KI-Methoden.

Präzisierung der Herausforderungen an die regelbasierte KI

Die regelbasierte KI ist im Hintertreffen

Die Unterscheidung zwischen regelbasierter und korpusbasierter KI ist in mehrerer Hinsicht sinnvoll, denn die beiden Methoden funktionieren völlig unterschiedlich. Das bedeutet nicht nur, dass die Herausforderungen ganz andere sind, sondern in der Folge auch die Entwicklungsverläufe zeitlich nicht parallel erfolgen. Wenn heute von KI gesprochen wird, ist eigentlich nur die korpusbasierte gemeint, die regelbasierte scheint deutlich abgehängt zu sein.

Meines Erachtens hat das aber nur damit zu tun, dass die regelbasierte KI in eine Sackgasse gekommen ist, aus der sie erst herausfindet, wenn sie ihre spezifischen Herausforderungen richtig erkennt.  Deshalb sollen hier die Herausforderungen genauer beschrieben werden.

Übersicht über die Herausforderungen

Im Vorbeitrag habe ich vier Herausforderungen an die regelbasierte KI genannt. Die ersten beiden lassen sich nicht grundsätzlich verbessern. Es braucht Experten für die Regelerstellung und die müssen sowohl Experten für abstrakte Logik wie auch Experten des jeweiligen Fachgebietes sein. Daran lässt sich nicht viel ändern. Auch die zweite Herausforderung bleibt bestehen, das Finden solcher Experten bleibt ein Problem.

Besser steht es um die Herausforderungen drei und vier, nämlich um die grosse Zahl der nötigen Regeln und ihre Komplexität. Obwohl gerade diese beiden Herausforderungen scheinbar unveränderliche Hürden von beträchtlicher Höhe darstellen, können sie mit den nötigen Erkenntnissen einiges an Schrecken verlieren. Allerdings müssen beide Herausforderungen konsequent angegangen werden, und das heisst, dass wir einige liebgewordenen Gewohnheiten und Denkmuster über Bord werfen müssen. Das sehen wir uns jetzt genauer an.

Für die Regeln braucht es einen Raum und einen Kalkulus

Regelbasierte KI besteht aus zwei Dingen:

  • den Regeln, die eine Domain (Fachgebiet) in einem bestimmten Format beschreiben und
  • einem Algorithmus, der bestimmt, wann welche Regeln ausgeführt werden.

Um die Regeln zu bauen, brauchen wir einen Raum, der festlegt, aus welchen Elementen die Regeln bestehen können und dadurch auch, was innerhalb des Systems überhaupt ausgesagt werden kann. Ein solcher Raum besteht nicht von selber, sondern muss bewusst gestaltet werden. Und zweitens brauchen wir ein Kalkulus, d.h. einen Algorithmus, der festlegt, wie die so gebauten Regeln angewendet werden. Selbstverständlich können sowohl der Raum als auch der Kalkulus ganz unterschiedlich angelegt sein, und diese Unterschiede «machen den Unterschied», d.h. sie erlauben eine entscheidende Verbesserung der regelbasierten KI, allerdings um den Preis, dass liebgewordene Gewohnheiten über Bord geworfen werden müssen.

Drei Neuerungen

In den 90er Jahren haben wir in unserem Projekt Semfinder deshalb in Beides investiert, sowohl in die grundlegende Gestaltung des Begriffsraums wie auch in den Kalkulus. Wir haben unser regelbasiertes System auf der Grundlage folgender drei Neuerungen erstellt:

  • Datenelemente: Konsequent komposite Datenelemente (Begriffsmoleküle).
  • Raum: Multidimensional-multifokale Architektur.
  • Kalkulus: Non Monotonic Reasoning (NMR).

Diese drei Neuerungen wirken zusammen und erlauben es , mit weniger Datenelementen und Regeln mehr Situationen präziser abzufangen. Durch die multifokale Architektur kann besser, d.h. situationsgerechter und detaillierter modelliert werden. Da gleichzeitig die Zahl der Elemente und Regeln abnimmt, verbessert sich die Übersicht und Wartbarkeit. Durch die drei Neuerungen gelingt es, die Grenzen zu sprengen, die regelbasierten Systemen bisher bezüglich Umfang, Präzision und Wartbarkeit gesetzt waren.


Dies ist ein Beitrag zum Thema künstliche Intelligenz (KI). Im Folgebeitrag werden wir untersuchen, wie die drei oben genannten Neuerungen wirken.

Die Herausforderungen an die regelbasierte KI

Regelbasiert im Vergleich zu korpusbasiert

Die korpusbasierte KI (Typus «Panzer», siehe KI-Einstiegsbeitrag) konnte ihre Schwächen erfolgreich überwinden (siehe Vorbeitrag). Dafür reichte eine Kombination von «Brute Force» (verbesserte Hardware) und einem idealen Opportunitätsfenster, als nämlich während der superheissen Expansionsphase des Internets Firmen wie Google, Amazon, Facebook und viele andere grosse Datenmengen sammeln und damit ihre Datenkorpora füttern konnten. Und mit einem ausreichend grossen Datenkorpus steht und fällt die korpusbasierte KI.

für die regelbasierte KI aber reichte «Brute Force» nicht aus. Es nützte auch nichts, viele Daten zu sammeln, da für den Regelbau die Daten auch organisiert werden müssen – und zwar grossenteils von Hand, also durch menschliche Fachexperten.

Herausforderung 1: Unterschiedliche Mentalitäten

Nicht alle Menschen sind gleichermassen davon fasziniert, Algorithmen zu bauen. Es braucht dazu eine besondere Art Abstraktionsfähigkeit, gepaart mit einer sehr gewissenhaften  Ader – jedenfalls was die Abstraktionen betrifft.  Jeder noch so kleine Fehler im Regelbau wird sich unweigerlich auswirken. Mathematiker verfügen sehr ausgeprägt über diese hier gefragte konsequent-gewissenhafte Mentalität, aber auch Naturwissenschaftler und Ingenieure zeichnen sich vorteilhaft dadurch aus. Natürlich müssen auch Buchhalter gewissenhaft sein, für den Regelbau der KI ist aber zusätzlich noch Kreativität gefragt.

Verkäufer, Künstler und Ärzte hingegen arbeiten in anderen Bereichen. Oft ist Abstraktion eher nebensächlich, und das Konkrete ist wichtig. Auch das Einfühlungsvermögen in andere Menschen kann sehr wichtig sein. Oder man muss schnell und präzis handeln können, z.B. als Chirurg. Diese Eigenschaften sind alle sehr wertvoll, für den Algorithmenbau aber weniger wichtig.

Das ist für die regelbasierte KI ein Problem. Denn für den Regelbau braucht es sowohl die Fähigkeiten des einen und als auch das Wissen des anderen Lagers: Es braucht die Mentalität, die einen guten Algorithmiker ausmacht, gepaart mit der Denkweise und dem Wissen des Fachgebiets, auf das sich die Regeln beziehen. Eine solche Kombination des Fachgebietswissens mit dem Talent zur Abstraktion ist selten zu finden. In den Krankenhäusern, in denen ich gearbeitet habe, waren die beiden Kulturen in ihrer Getrenntheit ganz klar ersichtlich. Hier die Ärzte, die Computer höchstens für die Rechnungsstellung oder für gewisse teure technische Apparate akzeptierten, die Informatik allgemein aber gering schätzten, und dort die Informatiker, die keine Ahnung davon hatten, was die Ärzte taten und wovon sie überhaupt sprachen. Die beiden Lager gingen sich meist einfach aus dem Weg. Selbstverständlich war es da nihct verwunderlich, dass die für die Medizin gebauten Expertensysteme meist nur für ganz kleine Teilgebiete funktionierten, wenn sie nicht im blossen Experimentierstadium verharrten.

Herausforderung 2: Wo finde ich die Experten?

Experten, die kreativ und in den beiden Mentalitätslagern gleichermassen zuhause sind, sind selbstverständlich schwer zu finden. Erschwerend kommt hinzu: Es gibt kaum Ausbildungsstätten für diese Art Experten. Realistisch sind auch folgende Fragen: Wo sind die Ausbildner, die sich mit den aktuellen Herausforderungen auskennen? Welche Diplome gelten wofür? Und wie evaluiert ein Geldgeber auf diesem neuen Gebiet, ob die eingesetzten Experten taugen und die Projektrichtung stimmt?

Herausforderung 3: Schiere Menge an nötigen Detailregeln

Dass eine grosse Menge an Detailwissen nötig ist, um in einer Realsituation sinnvolle Schlüsse zu ziehen, war schon für die korpusbasierte KI eine Herausforderung. Denn erst mit wirklich grossen Korpora, d.h. dank des Internets und gesteigerter Computerleistung gelang es ihr, die riesige Menge an Detailwissen zu erfassen, das für jedes realistische Expertensystem eine der Basisvoraussetzungen ist.

Für die regelbasierte KI ist es aber besonders schwierig, die grosse Wissensmenge bereitzustellen, denn sie braucht für die Wissenserstellung Menschen, welche die grosse Wissensmenge von Hand in computergängige Regeln fassen. Das ist eine sehr zeitraubende Arbeit, die zudem die schwierig zu findenden menschlichen Fachexperten erfordert, die den oben genannten Herausforderungen 1 und 2 genügen.

In dieser Situation stellt sich die Frage, wie grössere und funktionierende Regelsysteme überhaupt gebaut werden können? Gibt es eventuell Möglichkeiten, den Bau der Regelsysteme zu vereinfachen?

Herausforderung 4: Komplexität

Wer je versucht hat, ein Fachgebiet wirklich mit Regeln zu unterfüttern, merkt, dass er schnell an komplexe Fragen stösst, für die er in der Literatur keine Lösungen findet. In meinem Gebiet des Natural Language Processing (NLP) ist das offensichtlich. Die Komplexität ist hier nicht zu übersehen. Deshalb muss unbedingt auf sie eingegangen werden. Mit anderen Worten: Das Prinzip Hoffnung reicht nicht, sondern die Komplexität muss thematisiert und intensiv studiert werden.

Was Komplexität bedeutet, und wie man ihr begegnen kann, darauf möchte ich in einem weiteren Beitrag eingehen. Selbstverständlich darf dabei die Komplexität nicht zu einer übermässigen Regelvermehrung führen (siehe Herausforderung 3). Die Frage, die sich für die regelbasierte KI stellt, ist deshalb: Wie kann ein Regelsystem gebaut werden, das Detailhaltigkeit und Komplexität berücksichtigt, dabei aber einfach und übersichtlich bleibt?

Die gute Botschaft ist: Auf diese Frage gibt es durchaus Antworten.


Dies ist ein Beitrag zum Thema künstliche Intelligenz (KI). In einem Folgebeitrag werden die Herausforderungen präzisiert.

Die korpusbasierte KI überwindet ihre Schwächen

Zwei KI-Varianten: regelbasiert und korpusbasiert

Im Vorbeitrag erwähnte ich die beiden prinzipiellen Herangehensweisen, mit der versucht wird, dem Computer Intelligenz beizubringen, nämlich die regelbasierte und die korpusbasierte. Bei der regelbasierten steckt die Intelligenz in einem Regelpool, der von Menschen bewusst konstruiert wird. Bei der korpusbasierten Methode steckt das Wissen im Korpus, d.h. in einer Datensammlung, welche von einem raffinierten Programm analysiert wird.

Beide Methoden haben ihre Leistungen seit den 90er Jahren gewaltig steigern können. Am eindrücklichsten ist dies bei der korpusbasierten Methode geschehen, die heute als eigentliche künstliche Intelligenz gilt und in der breiten Öffentlichkeit für Schlagzeilen sorgt. Worauf beruhen die entscheidenden Verbesserungen der beiden Methoden? – Ich werde gleich auf beide Methoden und ihre Verbesserungen eingehen. Als erstes sehen wir uns an, wie die korpusbasierte KI funktioniert.

Wie funktioniert die korpusbasierte KI?

Eine korpusbasierte KI besteht aus zwei Teilen:

  1. Korpus
  2. Algorithmen (neuronales Netz)
k-KI mit Korpus und neuronalem Netz
Abb 1: Aufbau einer korpusbasierten KI

Der Korpus, auch Lernkorpus genannt, ist eine Sammlung von Daten. Dies können z.B. Photographien von Panzern oder Gesichtern sein, aber auch Sammlungen von Suchanfragen, z.B. von Google. Wichtig ist, dass der Korpus die Daten bereits bewertet enthält. Im Panzerbeispiel ist im Korpus vermerkt, ob es sich um eigene oder feindliche Panzer handelt. In der Gesichtersammlung ist vermerkt, um wessen Gesicht es sich jeweils handelt; bei den Suchanfragen speichert Google, welcher Link der Suchende anklickt, d.h. welcher Vorschlag von Google erfolgreich ist. Im Lernkorpus steckt also das Wissen, das die korpusbasierte KI verwenden wird.

Nun muss die KI lernen. Das Ziel ist, dass die KI ein neues Panzerbild, ein neues Gesicht oder eine neue Suchanfrage korrekt zuordnen kann. Dazu verwendet die KI das Wissen im Korpus, also z.B. die Bilder der Panzersammlung, wobei bei jedem Bild vermerkt ist, ob es sich um eigene oder fremde Panzer handelt – in Abb. 1 dargestellt durch die kleinen grauen und grünen Etiketten links von jedem Bild. Diese Bewertungen sind ein notwendiger Teil des Korpus.

Jetzt kommt der zweite Bestandteil der korpusbasierten KI ins Spiel, der Algorithmus. Im Wesentlichen handelt es sich um ein neuronales Netz. Es besteht aus mehreren Schichten von ‹Neuronen›, die Inputsignale aufnehmen, gegeneinander verrechnen und dann ihre eigenen Signale an die nächsthöhere Schicht ausgeben. In Abb. 1 ist dargestellt, wie die erste (gelbe) Neuronenschicht die Signale (Pixel) aus dem Bild aufnimmt und nach einer Verrechnung dieser Signale eigene Signale an die nächste (orange) Schicht weitergibt, bis am Schluss das Netz zum Resultat ‹eigener› oder ‹fremder› Panzer gelangt. Die Verrechnungen (Algorithmen) der Neuronen werden beim Training so lange verändert und angepasst, bis das Gesamtnetz bei jedem Bild das korrekte Resultat liefert.

Wenn jetzt ein neues, noch unbewertetes Bild dem neuronalen Netz vorgelegt wird, verhält sich dieses genau gleich wie bei den anderen Bildern. Wenn das Netz gut trainiert worden ist, sollte der Panzer vom Programm selbstständig zugeordnet werden können, d.h. das neuronale Netz erkennt, ob das Bild einen eigenen oder  fremden Panzer darstellt (Abb. 2).

Suchanfrage mit unbekanntem Panzer

Abb. 2: Suchanfrage mit noch nicht klassifiziertem Panzer an das neuronale Netz

Die Bedeutung des Datenkorpus für die korpusbasierte KI

Die korpusbasierte KI findet ihr Detailwissen im eigens für sie bereitgestellten Korpus vor und wertet die Verbindungen aus, die sie dort antrifft. Der Korpus enthält somit das Wissen, welches die korpusbasierte KI auswertet. Das Wissen besteht in unserem Beispiel in der Verbindung der Photographie, also einer Menge von wild angeordneten Pixeln mit einer einfachen binären Information (unser Panzer/fremder Panzer). Dieses Wissen findet sich im Korpus bereits bevor eine Auswertung durch die Algorithmen stattfindet. Die Algorithmen der korpusbasierte KI finden also nichts heraus, was nicht im Korpus steckt. Allerdings: Das im Korpus gefundene Wissen kann die korpusbasierte KI nun auch auf neue und noch nicht bewertete Fälle anwenden.

Die Herausforderungen an die korpusbasierte KI

Die Herausforderungen an die korpusbasierte KI sind eindeutig:

  1. Grösse des Korpus: Je mehr Bilder sich im Korpus befinden, umso sicherer kann die Zuordnung erfolgen. Ein zu kleiner Korpus bringt Fehlresultate. Die Grösse des Korpus ist für die Präzision und Zuverlässigkeit der Resultate entscheidend.
  2. Hardware: Die Rechenleistung, welche die korpusbasierte KI benötigt, ist sehr gross; und sie wird umso grösser, je präziser die Methode sein soll. Die Performance der Hardware entscheidet über die praktische Anwendbarkeit der Methode.

Dadurch wird schnell klar, wie die korpusbasierte KI ihre Leistung in den letzten zwei Jahrzehnten so eindrücklich verbessern konnte:

  1. Die Datenmengen, welche Google und andere Organisationen im Internet sammeln können, sind drastisch angestiegen. Google profitiert dabei von einem nicht unbedeutenden Verstärkungseffekt: Je mehr Anfragen Google bekommt, umso besser wird der Korpus und damit seine Trefferquote. Je besser die Trefferquote, umso mehr Anfragen bekommt Google.
  2. Die Hardware, welche zur Auswertung der Daten benötigt wird, wird immer günstiger und performanter. Internetfirmen und andere Organisationen verfügen heute über riesige Serverfarmen, welche die rechenintensiven Auswertungen der korpusbasierten KI erst möglich machen.

Neben dem Korpus und der Hardware spielt natürlich auch die Raffinesse der Algorithmen eine Rolle. Die Algorithmen waren aber auch schon vor Jahrzehnten nicht schlecht. Im Vergleich zu den beiden anderen Faktoren – Hardware und Korpus – spielt der Fortschritt bei den Algorithmen für den beeindruckenden Erfolg der korpusbasierten KI nur eine bescheidene Rolle.

Der Erfolg der korpusbasierten KI

Die Herausforderungen an die korpusbasierte KI wurden von den grossen Firmen und Organisationen äusserst erfolgreich angegangen.

Auf Basis der oben erfolgten Beschreibung der Funktionsweise sollten aber auch die systemimmanenten und in den Medien etwas weniger prominent platzierten Schwächen der korpusbasierten KI erkennbar werden. In einem späteren Beitrag werde ich genauer darauf eingehen.


Dies ist ein Beitrag zum Thema künstliche Intelligenz. In der Fortsetzung sehen wir die Herausforderungen für die regelbasierte KI an.

Regelbasierte KI: Wo steckt die Intelligenz?

Zwei KI-Varianten: regelbasiert und korpusbasiert

Die in den Vorbeiträgen erwähnten beiden KI-Varianten sind auch heute noch aktuell, und beide haben bemerkenswerte Erfolge zu verbuchen. Sie unterscheiden sich nicht zuletzt darin, wo genau bei ihnen die Intelligenz sitzt. Schauen wir zuerst das regelbasierte System an:

Aufbau eines regelbasierten Systems

Bei der Firma Semfinder verwendeten wir ein regelbasiertes System. Ich zeichnete 1999 dafür folgende Skizze:

Grün: Daten
Braun: Software
Hellblau: Knowledge Ware
Dunkelblau: Knowledge Engineer

Die Skizze besteht aus zwei Rechtecken, die zwei verschiedene Orte bezeichnen. Das Rechteck links unten zeigt, was im Krankenhaus geschieht, das Rechteck rechts oben, was zusätzlich im Knowledge Engineering abläuft.

Im Krankenhaus liest unser Kodierprogramm die Freitexte der Ärzte, interpretiert sie  zu Begriffsmolekülen und weist diesen mit Hilfe einer Wissensbasis die entsprechenden Kodes zu. Die Wissensbasis enthält die Regeln, mit denen die Texte interpretiert werden. Diese Regeln werden bei uns in der Entwicklerfirma von Menschen (Human Experts) erstellt. Die Regeln sind vergleichbar mit den Algorithmen eines Software-Programms, nur dass sie in einer «höheren» Programmiersprache geschrieben sind, sodass auch Nicht-Informatiker, nämlich die Domain-Experten, die in unserem Fall Ärzte sind, sie einfach bauen und sicher warten können. Dazu verwenden sie den Wissensbasis-Editor, eine weitere Software, welche es erlaubt, die Regeln zu sichten, zu testen, zu modifizieren oder auch ganz neu zu bauen.

Wo sitzt nun die Intelligenz?

Sie steckt in der Wissensbasis. Aber es handelt sich nicht um wirkliche Intelligenz. Die Wissensbasis kann nicht selbstständig denken, sie führt nur aus, was ein Mensch ihr vorgegeben hat. Ich habe deshalb unser System nie als ein intelligentes bezeichnet. Intelligenz bedeutet im mindesten, dass man neue Dinge lernen kann. Die Wissensbasis lernt aber nichts. Wenn ein neues Wort auftaucht oder ein neuer Aspekt der Kodierung eingebaut wird, dann macht dies nicht die Wissensbasis, sondern der Knowledge Engineerjj, also der Mensch. Der Rest (Hardware, Software, Wissensbasis) führt nur aus, was der Mensch vorgibt. Die Intelligenz in unserem System war immer und ausschliesslich Sache der Menschen – also eine natürliche und keine künstliche.


Ist das bei der korpusbasierten Methode anders? Im Folgebeitrag schauen wir dazu ein solches korpusbasiertes System genauer an.

Dies ist ein Beitrag zum Thema künstliche Intelligenz.

Zur KI: Schnaps und Panzer

KI im letzten Jahrhundert

KI ist heute ein grosses Schlagwort, war aber bereits in den 80er und 90er Jahren des letzten Jahrhunderts ein Thema, das für mich auf meinem Gebiet des Natural Language Processing interessant war. Es gab damals zwei Methoden, die gelegentlich als KI bezeichnet wurden und die unterschiedlicher nicht hätten sein können. Das Spannende daran ist, dass diese beiden unterschiedlichen Methoden heute noch existieren und sich weiterhin essenziell voneinander unterscheiden.

KI-1: Schnaps

Die erste, d.h. die Methode, die bereits die allerersten Computerpioniere verwendeten, war eine rein algorithmische, d.h. eine regelbasierte. Beispielhaft für diese Art Regelsysteme sind die Syllogismen des Aristoteles:

Prämisse 1: Alle Menschen sind sterblich.
Prämisse 2: Sokrates ist ein Mensch.
Schlussfolgerung: Sokrates ist sterblich.

Der Experte gibt Prämisse 1 und 2 ein, und das System zieht dann selbstständig die Schlussfolgerung. Solche Systeme lassen sich mathematisch untermauern. Mengenlehre und First-Order-Logic (Aussagelogik ersten Grades) gelten oft als sichere mathematische Grundlage. Theoretisch waren diese Systeme somit wasserdicht abgesichert. In der Praxis sah die Geschichte allerdings etwas anders aus. Probleme ergaben sich durch die Tatsache, dass auch die kleinsten Details in das Regelsystem aufgenommen werden mussten, da sonst das Gesamtsystem «abstürzte», d.h. total abstruse Schlüsse zog. Die Korrektur dieser Details nahm mit der Grösse des abgedeckten Wissens überproportional zu. Die Systeme funktionierten allenfalls für kleine Spezialgebiete, für die klare Regeln gefunden werden konnten, für ausgedehntere Gebiete wurden die Regelbasen aber zu gross und waren nicht mehr wartbar. Ein weiteres gravierendes Problem war die Unschärfe, die vielen Ausdrücken eigen ist, und die mit solchen hart-kodierten Systemen schwer in den Griff zu bekommen ist.

Diese Art KI geriet also zunehmend in die Kritik. Kolportiert wurde z.B. folgender Übersetzungsversuch: Ein NLP-Programm übersetzte Sätze vom Englischen ins Russische und wieder zurück, dabei ergab die Eingabe:
«Das Fleisch ist willig, aber der Geist ist schwach» die Übersetzung:
«Das Steak ist kräftig, aber der Schnaps ist lahm.»

Die Geschichte hat sich vermutlich nicht genau so zugetragen, aber das Beispiel zeigt die Schwierigkeiten, wenn man versucht, Sprache mit regelbasierten Systemen einzufangen. Die Anfangseuphorie, die seit den 50er Jahren mit dem «Elektronenhirn» und seiner «maschinellen Intelligenz» verbunden worden war, verblasste, der Ausdruck «Künstliche Intelligenz» wurde obsolet und durch den Ausdruck «Expertensystem» ersetzt, der weniger hochgestochen klang.

Später, d.h. um 2000, gewannen die Anhänger der regelbasierten KI allerdings wieder Auftrieb. Tim Berners-Lee, Pionier des WWW, lancierte zur besseren Benutzbarkeit des Internets die Initiative Semantic Web. Die Experten der regelbasierten KI, ausgebildet an den besten technischen Hochschulen der Welt, waren gern bereit, ihm dafür Wissensbasen zu bauen, die sie nun Ontologien nannten. Bei allem Respekt vor Berners-Lee und seinem Bestreben, Semantik ins Netz zu bringen, muss festgestellt werden, dass die Initiative Semantic Web nach bald 20 Jahren das Internet nicht wesentlich verändert hat. Meines Erachtens gibt es gute Gründe dafür: Die Methoden der klassischen mathematischen Logik sind zu rigid, die komplexen Vorgänge des Denkens nachzuvollziehen – mehr dazu in meinen anderen Beiträgen, insbesondere zur statischen und dynamischen Logik. Jedenfalls haben weder die klassischen regelbasierten Expertensysteme des 20. Jahrhunderts noch die Initiative «Semantic Web» die hoch gesteckten Erwartungen erfüllt.

KI-2: Panzer

In den 90er Jahren gab es aber durchaus auch schon Alternativen, die versuchten, die Schwächen der rigiden Aussagenlogik zu korrigieren. Dazu wurde das mathematische Instrumentarium erweitert.

Ein solcher Versuch war die Fuzzy Logic. Eine Aussage oder eine Schlussfolgerung war nun nicht mehr eindeutig wahr oder falsch, sondern der Wahrheitsgehalt konnte gewichtet werden. Neben Mengenlehre und Prädikatenlogik hielt nun auch die Wahrscheinlichkeitstheorie Einzug ins mathematische Instrumentarium der Expertensysteme. Doch einige Probleme blieben: Wieder musste genau und aufwendig beschrieben werden, welche Regeln gelten. Die Fuzzy Logic gehört also ebenfalls zur regelbasierten KI, wenn auch mit Wahrscheinlichkeiten versehen. Heute funktionieren solche Programme in kleinen, wohlabgegrenzten technischen Nischen perfekt, haben aber darüberhinaus keine Bedeutung.

Eine andere Alternative waren damals die Neuronalen Netze. Sie galten als interessant, allerdings wurden ihre praktischen Anwendungen eher etwas belächelt. Folgende Geschichte wurde dazu herum

gereicht:

Die amerikanische Armee – seit jeher ein wesentlicher Treiber der Computertechnologie – soll ein neuronales Netz zur Erkennung von eigenen und fremden Panzern gebaut haben. Ein neuronales Netz funktioniert so, dass die Schlussfolgerungen über mehrere Schichten von Folgerungen vom System selber gefunden werden. Der Mensch muss also keine Regeln mehr eingeben, diese werden vom System selber erstellt.

Wie kann das System das? Es braucht dazu einen Lernkorpus. Bei der Panzererkennung war das eine Serie von Fotos von amerikanischen und russischen Panzern. Für jedes Foto war also bekannt, ob amerikanisch oder russisch, und das System wurde nun so lange trainiert, bis es die geforderten Zuordnungen selbstständig erstellten konnte. Die Experten nahmen auf das Programm nur indirekt Einfluss, indem sie den Lernkorpus aufbauten; das Programm stellte die Folgerungen im neuronalen Netz selbstständig zusammen – ohne dass die Experten genau wussten, aus welchen Details das System mit welchen Regeln welche Schlüsse zog. Nur das Resultat musste natürlich stimmen. Wenn das System nun den Lernkorpus vollkommen integriert hatte, konnte man es testen, indem man ihm einen neuen Input zeigte, z.B. ein neues Panzerfoto, und es wurde erwartet, dass es mit den aus dem Lernkorpus gefundenen Regeln das neue Bild korrekt zuordnete. Die Zuordnung geschah, wie gesagt, selbständig durch das System, ohne dass der Experte weiteren Einfluss nahm und ohne dass er genau wusste, wie im konkreten Fall die Schlüsse gezogen wurden.

Das funktionierte, so wurde erzählt, bei dem Panzererkennungsprogramm perfekt. So viele Fotos dem Programm auch gezeigt wurden, stets erfolgte die korrekte Zuordnung. Die Experten konnten selber kaum glauben, dass sie wirklich ein Programm mit einer hundertprozentigen Erkennungsrate erstellt hatten. Wie konnte so etwas sein? Schliesslich fanden sie den Grund: Die Fotos der amerikanischen Panzer waren in Farbe, diejenigen der russischen schwarzweiss. Das Programm musste also nur die Farbe erkennen, die Silhouetten der Panzer waren irrelevant.

Regelbasiert versus korpusbasiert

Die beiden Anekdoten zeigen, welche Probleme damals auf die regelbasierte und die korpusbasierte KI warteten.

  • Bei der regelbasierten KI waren es:
    – die Rigidität der mathematischen Logik
    – die Unschärfe unserer Wörter
    – die Notwendigkeit, sehr grosse Wissenbasen aufzubauen
    – die Notwendigkeit, Fachexperten für die Wissensbasen einzusetzen
  • Bei der korpusbasierten KI waren es:
    – die Intransparenz der Schlussfolgerungs-Wege
    – die Notwendigkeit, einen sehr grossen und relevanten Lernkorpus aufzubauen

Ich hoffe, dass ich mit den beiden oben beschriebenen, zugegebenermassen etwas unfairen Beispielen den Charakter und die Wirkweise der beiden KI-Typen habe darstellen können, mitsamt den Schwächen, die die beiden Typen jeweils kennzeichnen.

Die Herausforderungen bestehen selbstverständlich weiterhin.  In den folgenden Beiträgen werde ich darstellen, wie die beiden KI-Typen darauf reagiert haben und wo bei den beiden Systemen nun wirklich die Intelligenz sitzt. Als Erstes schauen wir die korpusbasierte KI an.

Dies ist ein Beitrag zum Thema künstliche Intelligenz.